Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Transcriptome-wide measurement of poly(A) tail length and composition at subnanogram total RNA sensitivity by PAIso-seq

Abstract

Poly(A) tails are added to the 3′ ends of most mRNAs in a non-templated manner and play essential roles in post-transcriptional regulation, including mRNA export, stability and translation. Measuring poly(A) tails is critical for understanding their regulatory roles in almost every aspect of biological and medical studies. Previous methods for analyzing poly(A) tails require large amounts of input RNA (microgram-level total RNA), which limits their application. We recently developed a poly(A) inclusive full-length RNA isoform-sequencing method (PAIso-seq) at single-oocyte-level sensitivity (a single mammalian oocyte contains ~0.5 ng of total RNA) based on PacBio sequencing that enabled accurate measurement of the poly(A) tail length and non-A residues within the body of poly(A) tails along with the full-length cDNA, providing the opportunity to study precious in vivo samples with very limited input material. Here, we describe a detailed protocol for PAIso-seq library preparation from single mouse oocytes or bulk oocyte samples. In addition, we provide a complete bioinformatic pipeline to perform the analysis from the raw data to downstream analysis. The minimum time required is ~14.5 h for PAIso-seq double-stranded cDNA preparation, 2 d for PacBio sequencing in HiFi mode and 8 h for the initial data analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart for the PAIso-seq protocol.
Fig. 2: Flowchart for the bioinformatic pipeline.
Fig. 3: Application of PAIso-seq.
Fig. 4: Accurate measurement of poly(A) tail length validated by PSIs.
Fig. 5: Size distribution of PAIso-seq double-stranded cDNA.

Similar content being viewed by others

Data availability

The data used in this study for bioinformatic analysis are from our published dataset18. The PAIso-seq CCS reads in fastq format we previously deposited18 are available in the NCBI Sequence Read Archive under the accession number PRJNA529588. For this protocol, we uploaded the raw subread data for the GV_rep2 and SCGV datasets, which had not been deposited before, to the GSA hosted by the National Genomic Data Center (https://ngdc.cncb.ac.cn/gsa/) under the accession number CRA005547. The CCS read data containing the PSIs in fastq format are available in GSA under the accession number CRA005706, and the accompanying pass number files are available in GitHub (https://github.com/Lulab-IGDB/PAIso-seq_scripts/blob/main/polyA_spike-in_pass_file/).

Code availability

Custom scripts used for data analysis are available at GitHub: https://github.com/Lulab-IGDB/PAIso-seq_scripts.

References

  1. Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66–71 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lim, J. et al. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159, 1365–1376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lim, J. et al. Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science 361, 701–704 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Lim, J., Lee, M., Son, A., Chang, H. & Kim, V. N. mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development. Genes Dev. 30, 1671–1682 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ma, J., Fukuda, Y. & Schultz, R. M. Mobilization of dormant Cnot7 mRNA promotes deadenylation of maternal transcripts during mouse oocyte maturation. Biol. Reprod. 93, 48 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kumar, A., Clerici, M., Muckenfuss, L. M., Passmore, L. A. & Jinek, M. Mechanistic insights into mRNA 3′-end processing. Curr. Opin. Struct. Biol. 59, 143–150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eckmann, C. R., Rammelt, C. & Wahle, E. Control of poly(A) tail length. Wiley Interdiscip. Rev. RNA 2, 348–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Charlesworth, A., Meijer, H. A. & de Moor, C. H. Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip. Rev. RNA 4, 437–461 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sha, Q. Q. et al. CNOT6L couples the selective degradation of maternal transcripts to meiotic cell cycle progression in mouse oocyte. EMBO J. 37, e99333 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yu, C. et al. BTG4 is a meiotic cell cycle-coupled maternal-zygotic-transition licensing factor in oocytes. Nat. Struct. Mol. Biol. 23, 387–394 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Pasternak, M., Pfender, S., Santhanam, B. & Schuh, M. The BTG4 and CAF1 complex prevents the spontaneous activation of eggs by deadenylating maternal mRNAs. Open Biol. 6, 160184 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Liu, Y. et al. BTG4 is a key regulator for maternal mRNA clearance during mouse early embryogenesis. J. Mol. Cell Biol. 8, 366–368 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Costa-Mattioli, M., Sossin, W. S., Klann, E. & Sonenberg, N. Translational control of long-lasting synaptic plasticity and memory. Neuron 61, 10–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang, Y. S., Jung, M. Y., Sarkissian, M. & Richter, J. D. N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses. EMBO J. 21, 2139–2148 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron 21, 1129–1139 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Alarcon, J. M. et al. Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn. Mem. 11, 318–327 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chang, H., Lim, J., Ha, M. & Kim, V. N. TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol. Cell 53, 1044–1052 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Y., Nie, H., Liu, H. & Lu, F. Poly(A) inclusive RNA isoform sequencing (PAIso-seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails. Nat. Commun. 10, 5292 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Legnini, I., Alles, J., Karaiskos, N., Ayoub, S. & Rajewsky, N. FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control. Nat. Methods 16, 879–886 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, T. et al. Impact of poly(A)-tail G-content on Arabidopsis PAB binding and their role in enhancing translational efficiency. Genome Biol. 20, 189 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eisen, T. J. et al. The dynamics of cytoplasmic mRNA metabolism. Mol. Cell 77, 786–799.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eisen, T. J., Eichhorn, S. W., Subtelny, A. O. & Bartel, D. P. MicroRNAs cause accelerated decay of short-tailed target mRNAs. Mol. Cell 77, 775–785.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harrison, P. F. et al. PAT-seq: a method to study the integration of 3′-UTR dynamics with gene expression in the eukaryotic transcriptome. RNA 21, 1502–1510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Woo, Y. M. et al. TED-seq identifies the dynamics of poly(A) length during ER stress. Cell Rep. 24, 3630–3641.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Yu, F. et al. Poly(A)-seq: a method for direct sequencing and analysis of the transcriptomic poly(A)-tails. PLoS One 15, e0234696 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parker, M. T. et al. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification. eLife 9, e49658 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roach, N. P. et al. The full-length transcriptome of C. elegans using direct RNA sequencing. Genome Res. 30, 299–312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Long, Y., Jia, J., Mo, W., Jin, X. & Zhai, J. FLEP-seq: simultaneous detection of RNA polymerase II position, splicing status, polyadenylation site and poly(A) tail length at genome-wide scale by single-molecule nascent RNA sequencing. Nat. Protoc. 16, 4355–4381 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Jia, J. et al. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. Nat. Plants 6, 780–788 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Laehnemann, D., Borkhardt, A. & McHardy, A. C. Denoising DNA deep sequencing data—high-throughput sequencing errors and their correction. Brief. Bioinform. 17, 154–179 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Ross, M. G. et al. Characterizing and measuring bias in sequence data. Genome Biol. 14, R51 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Minoche, A. E., Dohm, J. C. & Himmelbauer, H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. 12, R112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hebert, P. D. N. et al. A Sequel to Sanger: amplicon sequencing that scales. BMC Genomics 19, 219 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhang, Y. et al. Alternative polyadenylation: methods, mechanism, function, and role in cancer. J. Exp. Clin. Cancer Res. 40, 51 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morgan, M., Kumar, L., Li, Y. & Baptissart, M. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell. Mol. Life Sci. 78, 8049–8071 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liudkovska, V. & Dziembowski, A. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases. Wiley Interdiscip. Rev. RNA 12, e1622 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Kandhari, N., Kraupner-Taylor, C. A., Harrison, P. F., Powell, D. R. & Beilharz, T. H. The detection and bioinformatic analysis of alternative 3′ UTR isoforms as potential cancer biomarkers. Int. J. Mol. Sci. 22, 5322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu, S. & Kim, V. N. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat. Rev. Mol. Cell Biol. 21, 542–556 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Hu, S. B. et al. Protein arginine methyltransferase CARM1 attenuates the paraspeckle-mediated nuclear retention of mRNAs containing IRAlus. Genes Dev. 29, 630–645 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, Y. et al. Genome-wide screening of NEAT1 regulators reveals cross-regulation between paraspeckles and mitochondria. Nat. Cell Biol. 20, 1145–1158 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Matz, M. et al. Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res. 27, 1558–1560 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ramskold, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, Y. Y., Machleder, E. M., Chenchik, A., Li, R. & Siebert, P. D. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30, 892–897 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Kapteyn, J., He, R., McDowell, E. T. & Gang, D. R. Incorporation of non-natural nucleotides into template-switching oligonucleotides reduces background and improves cDNA synthesis from very small RNA samples. BMC Genomics 11, 413 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Dijk, E. L., Jaszczyszyn, Y., Naquin, D. & Thermes, C. The third revolution in sequencing technology. Trends Genet. 34, 666–681 (2018).

    Article  PubMed  CAS  Google Scholar 

  51. Luo, C. et al. Superovulation strategies for 6 commonly used mouse strains. J. Am. Assoc. Lab. Anim. Sci. 50, 471–478 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Hu Nie for help in the bioinformatic analysis. This work was supported by the National Key Research and Development Program of China (2018YFA0107001), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA24020203), the National Natural Science Foundation of China (31970588, 32170606 and 81891001), the Natural Science Foundation of Heilongjiang province (YQ2020C003), the China Postdoctoral Science Foundation (2020M670516 and 2020T130687) and the State Key Laboratory of Molecular Developmental Biology.

Author information

Authors and Affiliations

Authors

Contributions

Y.L., J.W. and F.L. conceived and designed the study. Y.L. developed the method and performed the experiments. Y.Z. performed part of the bioinformatic analysis. Y.L., J.W. and F.L. designed the computational pipeline, analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Yusheng Liu, Jiaqiang Wang or Falong Lu.

Ethics declarations

Competing interests

Y.L. and F.L. are named inventors on a patent (number: 201910837492.2) filed by the Institute of Genetics and Developmental Biology covering the PAIso-seq method. The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Qingshun Quinn Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Additional initial assessment was performed by informal referee Andrzej Dziembowski.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Liu, Y. et al. Nat. Commun. 10, 5292 (2019): https://doi.org/10.1038/s41467-019-13228-9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, Y., Wang, J. et al. Transcriptome-wide measurement of poly(A) tail length and composition at subnanogram total RNA sensitivity by PAIso-seq. Nat Protoc 17, 1980–2007 (2022). https://doi.org/10.1038/s41596-022-00704-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00704-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing