Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Translation of 11C-labeled tracer synthesis to a CGMP environment as exemplified by [11C]ER176 for PET imaging of human TSPO

Abstract

Radiotracers labeled with carbon-11 (t1/2 = 20.4 min) are widely used with positron emission tomography for biomedical research. Radiotracers must be produced for positron emission tomography studies in humans according to prescribed time schedules while also meeting current good manufacturing practice. Translation of an experimental radiosynthesis to a current good manufacturing practice environment is challenging. Here we exemplify such translation with a protocol for the production of an emerging radiotracer for imaging brain translocator protein 18 kDa, namely [11C]ER176. This radiotracer is produced by rapid conversion of cyclotron-produced [11C]carbon dioxide into [11C]iodomethane, which is then used to treat N-desmethyl-ER176 in the presence of base (tBuOK) at room temperature for 5 min. [11C]ER176 is separated in high purity by reversed-phase HPLC and formulated for intravenous injection in sterile ethanol–saline. The radiosynthesis is reliable and takes 50 min. Quality control takes another 20 min. All aspects of the protocol, including quality control, are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Labeling of the tertiary amido group in (R)-PK11195 and ER176 with carbon-11.
Fig. 2: Comparison of the method for producing [11C]ER176 in the laboratory for preclinical studies with that in a CGMP environment for clinical studies.
Fig. 3: A typical radiochromatogram obtained for the HPLC separation of [11C]ER176 from the reaction mixture.
Fig. 4: A typical chromatogram from the QC HPLC analysis of formulated [11C]ER176.
Fig. 5: Configuration of apparatus within the hot cell.
Fig. 6

Similar content being viewed by others

Data availability

Data in this protocol are from the cited literature. Any new data are provided as original source data in the Supplementary Information.

Code availability

Software are deposited at https://github.com/jinsoohong-netizen/ER176

References

  1. Ametamey, S. M., Honer, M. & Schubiger, P. A. Molecular imaging with PET. Chem. Rev. 108, 1501–1516 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Matthews, P. M., Rabiner, E. A., Passchier, J. & Gunn, R. N. Positron emission tomography molecular imaging for drug development. Br. J. Clin. Pharmacol. 73, 175–186 (2011).

    Article  CAS  Google Scholar 

  3. Phelps, M. E. Positron emission tomography provides molecular imaging of biological processes. Proc. Natl Acad. Sci. USA 97, 9226–9233 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zanotti-Fregonara, P. et al. Synthesis and evaluation of translocator18 kDa protein (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971. ACS Chem. Neurosci. 5, 963–971 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Fan, J., Lindemann, P., Feuilloley, M. G. & Papadopoulos, V. Structural and functional evolution of the translocator protein (18 kDa). Curr. Mol. Med. 12, 369–386 (2012).

    CAS  PubMed  Google Scholar 

  6. Jaremko, L., Jaremko, M., Giller, K., Becker, S. & Zweckstetter, M. Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science 343, 1363–1366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cagnin, A., Gerhard, A. & Banati, R. B. In vivo imaging of neuroinflammation. Eur. Neuropsychopharmacol. 12, 581–586 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Owen, D. R. J. & Matthews, P. M. Imaging brain microglial activation using positron emission tomography and translocator protein-specific radioligands. Int. Rev. Neurobiol. 101, 19–39 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Doorduin, J., de Vries, E. F., Dierckx, R. A. & Klein, H. C. PET imaging of the peripheral benzodiazepine receptor: monitoring disease progression and therapy response in neurodegenerative disorders. Curr. Pharmaceut. Design 14, 3297–3315 (2008).

    Article  CAS  Google Scholar 

  10. Kreisl, W. C. et al. PET imaging of neuroinflammation in neurologic disorders. Lancet Neurol. 19, 940–950 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yasuno, F. et al. Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [11C]DAA1106. Biol. Psychiatry 64, 835–841 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Kreisl, W. C. et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain 136, 2228–2238 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kreisl, W. C. et al. 11C-PBR28 binding to translocator protein increases with progression of Alzheimer’s disease. Neurobiol. Aging 44, 53–61 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer, J. H. et al. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 7, 1064–1074 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Richards, E. M. et al. PET radioligand binding to translocator protein (TSPO) is increased in unmedicated depressed subjects. EJNMMI Res. 8, 57 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Camsonne, R. et al. Synthesis of N-(11C) methyl. N-(methyl-1 propyl). (chloro-2 phenyl)-1isoquinoleine carboxamide-3 (PK11195): a new ligand for peripheral benzodiazepine receptors. J. Label. Compd. Radiopharm 21, 985–991 (1984).

  17. Shah, F., Hume, S. P., Pike, V. W., Ashworth, S. & McDermott, J. Synthesis of the enantiomers of [N-methyl-11C]PK 11195 and comparison of their behaviours asradioligands for PK binding sites in rats. Nucl.Med. Biol. 21, 573–581 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Chauveau, F., Boutin, H., Van, C. N., Dollé, F. & Tavitian, B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur. J. Nucl. Med. Mol. Imaging 35, 2304–2319 (2008).

    Article  PubMed  Google Scholar 

  19. Dollè, F., Luus, C., Reynolds, A. J. & Kassiou, M. Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography. Curr. Med. Chem. 16, 2899–2923 (2009).

    Article  PubMed  Google Scholar 

  20. Briard, E. et al. Synthesis and evaluation in monkey of two sensitive 11C-labeled aryloxyanilide ligands for imaging brain peripheral benzodiazepine receptors in vivo. J. Med. Chem. 51, 17–30 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Fujita, M. et al. Kinetic analysis in healthy humans of a novel positron emission tomography radioligand to image the peripheral benzodiazepine receptor, a potential biomarker for inflammation. Neuroimage 40, 43–52 (2008).

    Article  PubMed  Google Scholar 

  22. Endres, C. J. et al. Initial evaluation of 11C-DPA-713, a novel TSPO PET ligand, in humans. J. Nucl. Med. 50, 1276–1282 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Kreisl, W. C. et al. Comparison of [11C]-(R)-PK 11195 and [11C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging. Neuroimage 49, 2924–2932 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Fujita, M. et al. Comparison of four 11C-labeled PET ligands to quantify translocator protein 18 kDa (TSPO) in human brain: (R)-PK11195, PBR28, DPA-713, and ER176-based on recent publications that measured specific-to-non-displaceable ratios. EJNMMI Res. 7, 84 (2017).

  25. Kobayashi, M. et al. 11C-DPA-713 has much greater specific binding to translocator protein 18 kDa (TSPO) in human brain than 11C-(R)-PK11195. J. Cereb. Blood Flow Metab. 38, 393–403 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Owen, D. R. et al. Two binding sites for [3H]PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation. J. Cereb. Blood Flow Metab. 30, 1608–1618 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Owen, D. R. et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J. Nucl. Med. 52, 24–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Kreisl, W. C. et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J. Cereb. Blood Flow Metab. 33, 53–58 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Owen, D. R. et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J. Cereb. Blood Flow Metab. 32, 1–5 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Ikawa, M. et al. 11C-ER176, a radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain. J. Nucl. Med. 58, 320–325 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zanotti-Fregonara, P. et al. Head-to-head comparison of 11C-PBR28 and 11C-ER176 for quantification of the translocator protein in the human brain. Eur. J. Nucl. Med. Mol. Imaging 46, 1822–1829 (2019).

    Article  PubMed  Google Scholar 

  32. Marazano, C., Maziere, M., Berger, G. & Comar, D. Synthesis of methyl iodide-11C and formaldehyde-11C. Int. J. Appl. Radiat. Isot. 28, 49–52 (1977).

    Article  CAS  PubMed  Google Scholar 

  33. Långström, B. & Lundqvist, H. The preparation of 11C-methyl iodide and its use in the synthesis of 11C-methyl-L-methionine. Int. J. Appl. Radiat. Isot. 27, 357–363 (1976).

    Article  PubMed  Google Scholar 

  34. Crouzel, C., Långström, B., Pike, V. W. & Coenen, H. H. Recommendations for a practical production of [11C]methyl iodide. Appl. Radiat. Isot. 38, 601–603 (1987).

    Article  CAS  Google Scholar 

  35. Crouzel, C. et al. Radiochemistry automation for PET. in Radiopharmaceuticals for Positron Emission Tomography (eds Stöcklin, G. & Pike, V. W.) 45–89 (Kluwer Academic, 1993).

  36. Hashimoto, K., Inoue, O., Suzuki, K., Yamasaki, T. & Kojima, M. Synthesis and evaluation of 11C-PK 11195 for in vivo study of peripheral-type benzodiazepine receptors using position emission tomography. Ann. Nucl. Med. 3, 63–71 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Pike, V. W. et al. Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites—current status. Nucl. Med. Biol. 20, 503–525 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, H. J. et al. A convenient radiolabeling of [11C](R)-PK11195 using loop method in automatic synthesis module. Nucl. Med. Mol. Imaging 43, 337–343 (2009).

    Google Scholar 

  39. Debruyne, J. C. et al. PET visualization of microglia in multiple sclerosis patients using [11C]PK11195. Eur. J. Neurol. 10, 257–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Coenen, H. H. et al. Consensus nomenclature rules for radiopharmaceutical chemistry—setting the record straight. Nucl. Med. Biol. 55, v–xi (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Link, J. M., Krohn, K. A. & Clark, J. C. Production of [11C]CH3I by single pass reaction of [11C]CH4 with I2. Nucl. Med. Biol. 24, 93–97 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Larsen, P., Ulin, J., Dahlstrøm, K. & Jensen, M. Synthesis of [11C]iodomethane by iodination of [11C]methane. Appl. Radiat. Isot. 48, 153–157 (1997).

    Article  CAS  Google Scholar 

  43. Christman, D. R., Finn, R. D., Karlstrom, K. I. & Wolf, A. P. The production of ultra high activity 11C-labelled hydrogen cyanide, carbon dioxide, carbon monoxide, and methane via the 14N(p,α)11C reaction. Int. J. Appl. Radiat. Isot. 26, 435–442 (1975).

    Article  CAS  Google Scholar 

  44. Wilson, A. A., Garcia, A., Jin, L. & Houle, S. Radiotracer synthesis from [11C]-iodomethane: a remarkably simple captive solvent method. Nucl. Med. Biol. 27, 529–532 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Jewett, D. M., Magner, T. J. & Watkins, G. L. Captive solvent methods for fast, simple carbon-11 radio-alkylations. in New Trends in Radiopharmaceutical Synthesis, Quality Assurance, and Regulatory Control (ed. Emran, A. M.) 387–391 (Plenum Press, 1991).

  46. Shao, X., Schnau, P. L., Fawaz, M. & Scott, P. J. H. Enhanced radiosyntheses of [11C]raclopride and [11C]DASB using ethanolic loop chemistry. Nucl. Med. Biol. 40, 109–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Dahl, K. et al. “In-loop” [11C]CO2 fixation: prototype and proof of concept. J. Label. Compd. Radiopharm 61, 252–262 (2018).

    Article  CAS  Google Scholar 

  48. Ferrat, M., Halldin, C., Dahl, K. & Schou, M. “In loop” carbonylation—a simplified method for carbon-11 labeling of drugs and radioligands. J. Label. Compd. Radiopharm 63, 100–107 (2020).

    Article  CAS  Google Scholar 

  49. Rahman, O., Kihlberg, T. & Långström, B. Synthesis of N-methyl-N-(1-methylpropyl)-1-(2-chlorophenyl)- isoquinoline-3-[11C]carboxamide ([11C-carbonyl]PK11195) and some analogues using [11C]carbon monoxide and 1-(2-chlorophenyl)isoquinolin-3-yl triflate. J. Chem. Soc., Perkin Trans. 1, 2699–2703 (2002).

    Article  Google Scholar 

  50. Pike, V. W. PET Radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol. Sci. 30, 431–440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Castellano, S. et al. Synthesis and biological evaluation of 4-phenylquinazoline-2-carboxamides designed as a novel class of potent ligands of the translocator protein. J. Med. Chem. 55, 4506–4510 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. General Chapter <823> Radiopharmaceuticals For Positron Emission Tomography—Compounding. in The United States Pharmacopeia, 24th rev., and The National Formulary, 19th ed. Rockville, MD: United States Pharmacopeial Convention, 1988–1990 (2000).

  53. US Food and Drug Administration, Department of Health and Human Services; Current good manufacturing practice for positron emission tomography drugs. Code of Federal Regulations, Title 21, vol. 4, Part 212 (revised April 1, 2020).

  54. Qaim, S. M. et al.. PET radionuclide production in PET. in Radiopharmaceuticals for Positron Emission Tomography (eds Stöcklin, G. & Pike, V. W.) 1–44 (Kluwer Academic, 1993).

  55. Bida, G., Ruth, T. J. & Wolf, A. P. Experimentally determined thick target yields for the 14N(p, α)11C reaction. Radiochim. Acta 27, 181–185 (1980).

    Article  CAS  Google Scholar 

  56. Buckley, K. R., Huser, J., Jivan, S., Chun, K. S. & Ruth, T. J. 11C-Methane production in small volume, high pressure gas targets. Radiochim. Acta 88, 201–205 (2000).

    Article  CAS  Google Scholar 

  57. Suzuki, K., Yamazaki, I., Sasaki, M. & Kubodera, A. Specific activity of [11C]CO2 generated in a N2 gas target: effect of irradiation dose, irradiation history, oxygen content and beam energy. Radiochim. Acta 88, 211–216 (2000).

    Article  CAS  Google Scholar 

  58. Gómez-Vallejo, V., Gaja, V., Koziorowski, J. & Llop, J. Specific activity of 11C-labelled radiotracers: a big challenge for PET chemists. in Positron Emission Tomography—Current Clinical and Research Aspects (ed. Hsieh, C.-H.) 183–210 (Intechopen.com, 2012).

  59. wa Kitwanga, S., Leleux, P., Lipnik, P. & Vanhorenbeeck, J. Production of 14,15O, 18F, and 19Ne radioactive nuclei from (p, n) reactions up to 30 MeV. Phys. Rev. C 42, 748–752 (1990).

    Article  Google Scholar 

  60. Jewett, D. M. A simple synthesis of [11C]methyl triflate. Appl. Radiat. Isot. 43, 1383–1385 (1992).

    Article  CAS  Google Scholar 

  61. Mathis, C. A. et al. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem. 46, 2740–2754 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Solbach, C., Uebele, M., Reischl, G. & Machulla, H.-J. Efficient radiosynthesis of carbon-11 labelled uncharged Thioflavin T derivatives using [11C]methyl triflate for β-amyloid imaging in Alzheimer’s Disease with PET. Appl. Rad. Isot. 62, 591–595 (2005).

    Article  CAS  Google Scholar 

  63. Matarrese, M. et al. Labeling and evaluation of N-[11C]methylated quinoline-2-carboxamides as potential radioligands for visualization of peripheral benzodiazepine receptors. J. Med. Chem. 44, 579–585 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Cleij, M. C., Aigbirhio, F. I., Baron, J.-C. & Clark, J. C. Base-promoted dechlorination of (R)-[11C]PK11195. J. Label. Compd. Radiopharm 46, S88 (2003).

    Google Scholar 

  65. Ikoma, T. et al. Radicals in the mechanochemical dechlorination of hazardous organochlorine compounds using CaO nanoparticles radicals in mechanochemical dechlorination. Bull. Chem. Soc. Jpn. 74, 2303–2309 (2001).

    Article  CAS  Google Scholar 

  66. Tanaka, Y., Zhang, Q. & Saito, F. Mechanochemical dechlorination of trichlorobenzene on oxide surfaces. J. Phys. Chem. B 107, 11091–11097 (2003).

    Article  CAS  Google Scholar 

  67. Tanaka, Y., Zhang, Q., Saito, F., Ikoma, T. & Tero-Kubota, S. Dependence of mechanochemically induced decomposition of mono-chlorobiphenyl on the occurrence of radicals. Chemosphere 60, 939–943 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Lu, S., Huang, J., Peng, Z., Li, X. & Yan, J. Ball milling 2,4,6-trichlorophenol with calcium oxide: dechlorination experiment and mechanism considerations. Chem. Eng. J. 195–196, 62–68 (2012).

    Article  CAS  Google Scholar 

  69. Gómez-Vallejo, V. & Llop, J. Fully automated and reproducible radiosynthesis of high specific activity [¹¹C]raclopride and [¹¹C]Pittsburgh compound-B using the combination of two commercial synthesizers. Nucl. Med. Commun. 32, 1011–1017 (2011).

    Article  PubMed  CAS  Google Scholar 

  70. Verdurand, M. et al. Automated radiosynthesis of the Pittsburg compound-B using a commercial synthesizer. Nucl. Med. Commun. 29, 920–926 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Canales-Candela, R., Riss, P. J. & Aigbirhio, F. I. Synthesis of [11C]flumazenil ([11C]FMZ). in Radiochemical Syntheses, Vol. 1: Radiopharmaceuticals for Positron Emission Tomography (eds Hockley, B. G. & Scott, P. J. H.) 221‒231 (John Wiley and Sons, 2012).

  72. Shao, X. & Kilbourn, M. R. A simple modification of GE tracerlab FX C Pro for rapid sequential preparation of [11C]carfentanil and [11C]raclopride. Appl. Radiat. Isot. 67, 602–605 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Shao, X. et al. Highlighting the versatility of the Tracerlab synthesis modules. Part 2: fully automated production of [11C]-labeled radiopharmaceuticals using a Tracerlab FXC-Pro. J. Label. Compd. Radiopharm. 54, 819–838 (2011).

    Article  CAS  Google Scholar 

  74. Houle, S. & Vasdev, N. Utility of commercial radiosynthetic modules in captive solvent [11C]-methylation reactions. J. Label. Compd. Radiopharm. 52, 490–492 (2009).

    Article  CAS  Google Scholar 

  75. Collier, T. L. et al. Synthesis and preliminary PET imaging of 11C and 18F isotopologues of the ROS1/ALK inhibitor lorlatinib. Nat. Commun. 8, 15761 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. James, M. L. et al. Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand. Bioorg. Med. Chem. 13, 6188–6194 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Cremer, J. E. et al. The distribution of radioactivity in brains of ratsgiven [N-methyl-11C]PK 11195 in vivo after induction of a corticalischaemic lesion. Nucl.Med. Biol. 19, 159–166 (1992).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institutes of Health (National Institute of Mental Health project number ZIA-MH002793). The authors are grateful to the NIH Clinical Center PET Department (Chief: P. Herscovitch) for cyclotron production of carbon-11. The authors thank S. Lu (NIMH) for careful checking of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

V.W.P. conceived and supervised the project. Y.Z, S.T. and C.L.M. developed the radiochemistry. J.H. developed the automated radiosynthesis procedure and analytical methods. S.T., C.L.M., W.H.M. and J.H. performed productions and analyses. H.U.S. performed mass spectrometry. All authors analyzed the data, and read and approved the manuscript.

Corresponding author

Correspondence to Victor W. Pike.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Fujita, M. et al. EJNMMI Res. 7, 84 (2017): https://ejnmmires.springeropen.com/track/pdf/10.1186/s13550-017-0334-8.pdf

Extended data

Extended Data Fig. 1

Overall setup of the [11C]ER176 production apparatus.

Supplementary information

Supplementary Information

Supplementary Methods 1–9, Supplementary Figs. 1–8 and Supplementary Tables 1–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Telu, S., Zhang, Y. et al. Translation of 11C-labeled tracer synthesis to a CGMP environment as exemplified by [11C]ER176 for PET imaging of human TSPO. Nat Protoc 16, 4419–4445 (2021). https://doi.org/10.1038/s41596-021-00584-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00584-4

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing