Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Regional and functional division of functional elements of solid-state nanochannels for enhanced sensitivity and specificity of biosensing in complex matrices

Abstract

Solid-state nanochannels (SSNs) provide a promising approach for biosensing due to the confinement of molecules inside, their great mechanical strength and diversified surface chemical properties; however, until now, their sensitivity and specificity have not satisfied the practical requirements of sensing applications, especially in complex matrices, i.e., media of diverse constitutions. Here, we report a protocol to achieve explicit regional and functional division of functional elements at the outer surface (FEOS) and inner wall (FEIW) of SSNs, which offers a nanochannel-based sensing platform with enhanced specificity and sensitivity. The protocol starts with the fabrication and characterization of the distribution of FEOS and FEIW. Then, the evaluation of the contributions of FEOS and FEIW to ionic gating is described; the FEIW mainly regulate ionic gating, and the FEOS can produce a synergistic effect. Finally, hydrophobic or highly charged FEOS are applied to ward off interference molecules, non-target molecules that may affect the ionic signal of nanochannels, which decreases false signals and helps to achieve the highly specific ionic output in complex matrices. Compared with other methods currently available, this method will contribute to the fundamental understanding of substance transport in SSNs and provide high specificity and sensitivity in SSN-based analyses. The procedure takes 3–6 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FEOS and FEIW functionalized SSNs can be created and characterized for biosensing applications in complex matrices.
Fig. 2: Explicit spatial partitioning of FEs at the OS of nanochannels (FEOS) and at the IW of nanochannels (FEIW).
Fig. 3: Depth of IW and OS metal coating of nanochannels characterized by ToF-SIMS.
Fig. 4: Ionic and electrolytic output system.
Fig. 5: Highly efficient ion-gating systems using DNA supersandwich as FEs.
Fig. 6: Molecular formulae of glucose-sensing probes.
Fig. 7: Sensing performance of the ion-gating systems in complex matrices.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the article and its Supplementary Information files.

References

  1. Ash, C. Hooking into antigen transfer. Science 363, 1052–1054 (2019).

    Google Scholar 

  2. Lan, W. et al. Voltage-rectified current and fluid flow in conical nanopores. Acc. Chem. Res. 49, 2605–2613 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Peters, P. B., van Roij, R., Bazant, M. Z. & Biesheuvel, P. M. Analysis of electrolyte transport through charged nanopores. Phys. Rev. E 93, 053108 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Bayley, H. Nanopore sequencing: from imagination to reality. Clin. Chem 61, 25–31 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Cao, C. et al. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nat. Nanotechnol. 11, 713–718 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Guo, B. et al. Analyte-triggered DNA-probe release from a triplex molecular beacon for nanopore sensing. Angew. Chem. Int. Ed. 57, 3602–3606 (2018).

    Article  CAS  Google Scholar 

  9. Howorka, S. Building membrane nanopores. Nat. Nanotechnol. 12, 619–630 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Hou, X., Guo, W. & Jiang, L. Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 40, 2385–2401 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Iqbal, S. M., Akin, D. & Bashir, R. Solid-state nanopore channels with DNA selectivity. Nat. Nanotechnol. 2, 243–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Kowalczyk, S. W., Tuijtel, M. W., Donkers, S. P. & Dekker, C. Unraveling single-stranded DNA in a solid-state nanopore. Nano Lett 10, 1414–1420 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Keyser, U. F. Enhancing nanopore sensing with DNA nanotechnology. Nat. Nanotechnol. 11, 106–108 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Liang, B. et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration. Nat. Chem. 10, 961–967 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Xie, Q. et al. Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13, 238–245 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Burns, J. R., Seifert, A., Fertig, N. & Howorka, S. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotechnol. 11, 152–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, C. et al. An all-in-one nanopore battery array. Nat. Nanotechnol. 9, 1031–1039 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Nagashima, G., Levine, E. V., Hoogerheide, D. P., Burns, M. M. & Golovchenko, J. A. Superheating and homogeneous single bubble nucleation in a solid-state nanopore. Phys. Rev. Lett. 113, 024506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou, C. et al. Gated ion transport in a soft nanochannel with biomimetic polyelectrolyte brush layers. Sens. Actuators B Chem. 229, 305–314 (2016).

    Article  CAS  Google Scholar 

  22. Mei, L., Yeh, L. & Qian, S. Gate modulation of proton transport in a nanopore. Phys. Chem. Chem. Phys. 18, 7449–7458 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Perera, R. T., Johnson, R. P., Edwards, M. A. & White, H. S. Effect of the electric double layer on the activation energy of ion transport in conical nanopores. J. Phys. Chem. C 119, 24299–24306 (2015).

    Article  CAS  Google Scholar 

  24. Gao, P. & Martin, C. R. Voltage charging enhances ionic conductivity in gold nanotube membranes. ACS Nano 8, 8266–8272 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Ding, D., Gao, P., Ma, Q., Wang, D. & Xia, F. Biomolecule-functionalized solid-state ion nanochannels/nanopores: features and techniques. Small 15, 1804878 (2019).

    Article  CAS  Google Scholar 

  27. Duan, C. & Majumdar, A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 5, 848–852 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Wei, R., Gatterdam, V., Wieneke, R., Tampé, R. & Rant, U. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat. Nanotechnol. 7, 257–263 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Lin, X., Yang, Q., Ding, L. & Su, B. Ultrathin silica membranes with highly ordered and perpendicular nanochannels for precise and fast molecular separation. ACS Nano 9, 11266–11277 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Wu, K. et al. Wettability effect on nanoconfined water flow. Proc. Natl Acad. Sci. USA 114, 3358–3363 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He, X. et al. Chaotropic monovalent anion-induced rectification inversion at nanopipettes modified by polyimidazolium brushes. Angew. Chem. Int. Ed. 130, 4680–4683 (2018).

    Article  Google Scholar 

  32. Zhang, F., Sun, Y., Tian, D. & Li, H. Chiral selective transport of proteins by cysteine-enantiomer-modified nanopores. Angew. Chem., Int. Ed. 56, 7186–7190 (2017).

    Article  CAS  Google Scholar 

  33. Perez-Mitta, G. et al. Highly sensitive biosensing with solid-state nanopores displaying enzymatically reconfigurable rectification properties. Nano Lett 18, 3303–3310 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Jiang, Z. et al. Insight into ion transfer through the sub-nanometer channels in zeolitic imidazolate frameworks. Angew. Chem. Int. Ed. 56, 4767–4771 (2017).

    Article  CAS  Google Scholar 

  35. Ma, J. et al. Drastically reduced ion mobility in a nanopore due to enhanced pairing and collisions between dehydrated Ions. J. Am. Chem. Soc. 141, 4264–4272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, H. et al. Dual-response for Hg2+ and Ag+ ions based on biomimetic funnel-shaped alumina nanochannels. J. Mater. Chem. B 3, 1699–1705 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Cao, J. et al. Ultrasensitive capture, detection, and release of circulating tumor cells using a nanochannel-ion channel hybrid coupled with electrochemical detection technique. Anal. Chem. 89, 10957–10964 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Xie, G. et al. Chiral recognition of L-tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel. Chem. Commun. 51, 3135–3138 (2015).

    Article  CAS  Google Scholar 

  39. Ali, M. et al. Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. J. Am. Chem. Soc 130, 16351–16357 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Liao, T. et al. Ultrasensitive detection of microRNAs with morpholino-functionalized nanochannel biosensor. Anal. Chem. 89, 5511–5518 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Lepoitevin, M. et al. Combining a sensor and a pH-gated nanopore based on an avidin–biotin system. Chem. Commun. 51, 5994–5997 (2015).

    Article  CAS  Google Scholar 

  42. Zhang, Z., Wen, L. & Jiang, L. Bioinspired smart asymmetric nanochannel membranes. Chem. Soc. Rev. 47, 322–356 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Strambio-De-Castillia, C., Niepel, M. & Rout, M. P. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 11, 490–501 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Mohapatra, S., Lin, C.-T., Feng, X. A., Basu, A. & Ha, T. Single-molecule analysis and engineering of DNA motors. Chem. Rev. 120, 36–78 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Ayub, M., Stoddart, D. & Bayley, H. Nucleobase recognition by truncated α-hemolysin pores. ACS Nano 9, 7895–7903 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wei, Z.-X. et al. Learning shapelets for improving single-molecule nanopore sensing. Anal. Chem. 91, 10033–10039 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Gao, P. et al. Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels. Nat. Commun. 9, 4557 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Li, X. et al. Role of outer surface probes for regulating ion gating of nanochannels. Nat. Commun. 9, 40 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Xu, X. et al. Coordination of the electrical and optical signals revealing nanochannels with an ‘onion-like’ gating mechanism and its sensing application. NPG Asia Mater. 8, e234 (2016).

    Article  CAS  Google Scholar 

  50. Buchsbaum, S. F., Nguyen, G., Howorka, S. & Siwy, Z. S. DNA-modified polymer pores allow pH- and voltage-gated control of channel flux. J. Am. Chem. Soc. 136, 9902–9905 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Jiang, Y. et al. On the origin of ionic rectification in DNA-stuffed nanopores: the breaking and retrieving symmetry. J. Am. Chem. Soc. 139, 18739–18746 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Tagliazucchi, M., Rabin, Y. & Szleifer, I. Transport rectification in nanopores with outer membranes modified with surface charges and polyelectrolytes. ACS Nano 7, 9085–9097 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Cao, L. et al. On the origin of ion selectivity in ultrathin nanopores: insights for membrane-scale osmotic energy conversion. Adv. Funct. Mater. 28, 1804189 (2018).

    Article  CAS  Google Scholar 

  54. Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, S. B. & Martin, C. R. Electromodulated molecular transport in gold-nanotube membranes. J. Am. Chem. Soc. 124, 11850–11851 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Zhao, X. et al. Nanochannel-ion channel hybrid device for ultrasensitive monitoring of biomolecular recognition events. Anal. Chem. 91, 1185–1193 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Huang, K. & Szleifer, I. Design of multifunctional nanogate in response to multiple external stimuli using amphiphilic diblock copolymer. J. Am. Chem. Soc. 139, 6422–6430 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Sun, Z. et al. Fabrication of cysteine-responsive biomimetic single nanochannels by a thiol-yne reaction strategy and their application for sensing in urine samples. Adv. Mater. 26, 455–460 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Song, M. et al. Design and fabrication of a biomimetic nanochannel for highly sensitive arginine response in serum samples. Chem. Eur. J. 20, 7987–7993 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, N. et al. Two-way nanopore sensing of sequence-specific oligonucleotides and small-molecule targets in complex matrices using integrated DNA supersandwich structures. Angew. Chem. Int. Ed. 52, 2007–2011 (2013).

    Article  CAS  Google Scholar 

  61. Liu, X. et al. Label-free detection of telomerase activity in urine using telomerase-responsive porous anodic alumina nanochannels. Anal. Chem. 88, 8107–8114 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Lou, X. et al. Real-time, quantitative lighting-up detection of telomerase in urines of bladder cancer patients by AIEgens. Anal.Chem. 87, 6822–6827 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, N., Hou, R., Gao, P., Lou, X. & Xia, F. Sensitive Zn2+ Sensor based on biofunctionalized nanopores by combination of DNAzyme and DNA supersandwich structures. Analyst 141, 3626–3629 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, F. et al. Ultrasensitive and label-free detection of cell surface glycan using nanochannel-ionchannel hybrid coupled with electrochemical detector. Anal. Chem. 92, 5509–5516 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. de la Escosura-Muñiz, A. & Merkoçi, A. A nanochannel / nanoparticle-based filtering and sensing platform for direct detection of a cancer biomarker in blood. Small 7, 675–682 (2011).

    Article  PubMed  CAS  Google Scholar 

  66. Huang, X., Xie, L., Lin, X. & Su, B. Detection of metoprolol in human biofluids and pharmaceuticals via ion-transfer voltammetry at the nanoscopic liquid/liquid interface array. Anal. Chem. 89, 945–951 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Cheng, B. et al. Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. Sens. Actuators B Chem. 269, 364–371 (2018).

    Article  CAS  Google Scholar 

  68. Zhao, X., Wang, S., Younis, M. R., Xia, X. & Wang, C. Asymmetric nanochannel-ionchannel hybrid for ultrasensitive and label-free detection of copper ions in blood. Anal. Chem. 90, 896–902 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Huh, D. et al. Tuneable elastomeric nanochannels for nanofluidic manipulation. Nat. Mater. 6, 424–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Zhao, X. et al. Biomimetic nanochannel-ionchannel hybrid for ultrasensitive and label-free detection of microRNA in cells. Anal. Chem. 91, 3582–3589 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Rodrigues, S., Munichandraiah, N. & Shukla, A. K. A review of state-of-charge indication of batteries by means of a.c. impedance measurements. J. Power Sources 87, 12–20 (2000).

    Article  CAS  Google Scholar 

  72. Gao, P. et al. Functional “Janus” annulus in confined channels. Adv. Mater. 28, 460–465 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Fan, S., Zhang, A., Ju, C., Gao, L. & Wang, K. A triphenylamine-grafted imidazo[4,5-f][1,10]phenanthroline ruthenium(II) complex: acid–base and photoelectric properties. Inorg. Chem. 49, 3752–3763 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Long, Z. et al. Recent advances in solid nanopore/channel analysis. Anal. Chem. 90, 577–588 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, M., Zhang, G., Zhang, D., Zhu, D. & Tang, B. Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J. Mater. Chem. 20, 1858–1867 (2010).

    Article  CAS  Google Scholar 

  76. Lou, X. et al. A new turn-on chemosensor for bio-thiols based on the nanoaggregates of a tetraphenylethene-coumarin fluorophore. Nanoscale 6, 14691–14696 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Xia, H. L., Hua, X. & Long, Y.-T. Visualization of the electrolyte migration under electrochemical process by ToF-SIMS. Acta Chimi. Sinica 77, 1164–1167 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (22090050, 21974126, 21874121 and 51803194). This research is supported by the Hubei Provincial Natural Science Foundation of China (2020CFA037), Zhejiang Provincial Natural Science Foundation of China under grant nos. LY19B030001 and LD21B050001. The project is supported by the Open-end Funds from the Engineering Research Center of Nano-Geomaterials of thMinistry of Education (NGM2019KF013) and the Fundamental Research Funds for National Universities, China University of Geosciences (Wuhan). This research work was supported by the Open Funds of the State Key Laboratory of Electroanalytical Chemistry (SKLEAC202003) and the National Key Research and Development Program of China (2018YFE0206900).

Author information

Authors and Affiliations

Authors

Contributions

F.X. directed the project. P.G. designed the research. D.W. and Q.M. organized the text about the preparation and modification of nanochannels. X.W and Y.C. organized the tables and the figures. X.L. organized the text about the electrochemical and fluorescent tests. P.G., C.C., X.W., D.D., Y.L. and Y.C. wrote the manuscript. All authors contributed to discussions.

Corresponding author

Correspondence to Fan Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Hai-Chen Wu and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Gao, P. et al. Nat. Commun. 9, 4557 (2018): https://doi.org/10.1038/s41467-018-06873-z

Li, X. et al. Nat. Commun. 9, 40 (2018): https://doi.org/10.1038/s41467-018-03030-4

Xu, X. et al. NPG Asia Mater. 8, e234 (2016): https://doi.org/10.1038/am.2015.138

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Supplementary Table 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Wang, D., Che, C. et al. Regional and functional division of functional elements of solid-state nanochannels for enhanced sensitivity and specificity of biosensing in complex matrices. Nat Protoc 16, 4201–4226 (2021). https://doi.org/10.1038/s41596-021-00574-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00574-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing