Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Near-infrared catecholamine nanosensors for high spatiotemporal dopamine imaging

Abstract

Dopamine neuromodulation of neural synapses is a process implicated in a number of critical brain functions and diseases. Development of protocols to visualize this dynamic neurochemical process is essential to understanding how dopamine modulates brain function. We have developed a non-genetically encoded, near-IR (nIR) catecholamine nanosensor (nIRCat) capable of identifying ~2-µm dopamine release hotspots in dorsal striatal brain slices. nIRCat is readily synthesized through sonication of single walled carbon nanotubes with DNA oligos, can be readily introduced into both genetically tractable and intractable organisms and is compatible with a number of dopamine receptor agonists and antagonists. Here we describe the synthesis, characterization and implementation of nIRCat in acute mouse brain slices. We demonstrate how nIRCat can be used to image electrically or optogenetically stimulated dopamine release, and how these procedures can be leveraged to study the effects of dopamine receptor pharmacology. In addition, we provide suggestions for building or adapting wide-field microscopy to be compatible with nIRCat nIR fluorescence imaging. We discuss strategies for analyzing nIR video data to identify dopamine release hotspots and quantify their kinetics. This protocol can be adapted and implemented for imaging other neuromodulators by using probes of this class and can be used in a broad range of species without genetic manipulation. The synthesis and characterization protocols for nIRCat take ~5 h, and the preparation and fluorescence imaging of live brain slices by using nIRCats require ~6 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the procedure.
Fig. 2: nIRCat synthesis.
Fig. 3: nIRCat characterization.
Fig. 4: Preparation of nIRCat-labeled acute brain slices.
Fig. 5: Acquiring and processing evoked dopamine response from nIRCat-labeled acute brain slices.

Similar content being viewed by others

Data availability

All materials are available from commercial sources or can be derived by using methods described in this protocol. All primary data underlying the figures reported in the article are publicly available via the Dryad repository at https://doi.org/10.6078/D1VH87. Additional data can be obtained from the corresponding author upon reasonable request.

Code availability

Code for analyzing and processing nIR images is freely available online at https://github.com/jtdbod/Nanosensor-Imaging-App and released under an MIT license.

References

  1. Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).

    Article  CAS  Google Scholar 

  2. Double, K. L. & Crocker, A. D. Dopamine receptors in the substantia nigra are involved in the regulation of muscle tone. Proc. Natl. Acad. Sci. USA 92, 1669–1673 (1995).

    Article  CAS  Google Scholar 

  3. Berke, J. D. What does dopamine mean? Nat. Neurosci. 21, 787–793 (2018).

    Article  CAS  Google Scholar 

  4. Dudman, J. T. & Krakauer, J. W. The basal ganglia: from motor commands to the control of vigor. Curr. Opin. Neurobiol. 37, 158–166 (2016).

    Article  CAS  Google Scholar 

  5. Lebowitz, J. J. & Khoshbouei, H. Heterogeneity of dopamine release sites in health and degeneration. Neurobiol. Dis. 134, 104633 (2020).

    Article  CAS  Google Scholar 

  6. Bibb, J. A. et al. Severe deficiencies in dopamine signaling in presymptomatic Huntington’s disease mice. Proc. Natl. Acad. Sci. USA 97, 6809–6814 (2000).

    Article  CAS  Google Scholar 

  7. Weinstein, J. J. et al. Pathway-specific dopamine abnormalities in schizophrenia. Biol. Psychiatry. 81, 31–42 (2017).

    Article  CAS  Google Scholar 

  8. Greengard, P. The neurobiology of slow synaptic transmission. Science 294, 1024–1030 (2001).

    Article  CAS  Google Scholar 

  9. Rice, M. E. & Cragg, S. J. Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res. Rev. 58,, 303–313 (2008).

    Article  Google Scholar 

  10. Zoli, M. et al. The emergence of the volume transmission concept. Brain Res. Rev. 26, 136–147 (1998).

    Article  CAS  Google Scholar 

  11. Beyene, A. G., McFarlane, I. R., Pinals, R. L. & Landry, M. P. Stochastic simulation of dopamine neuromodulation for implementation of fluorescent neurochemical probes in the striatal extracellular space. ACS Chem. Neurosci. 8, 2275–2289 (2017).

    Article  CAS  Google Scholar 

  12. Beyene, A. G., Yang, S. J. & Landry, M. P. Review article: tools and trends for probing brain neurochemistry. J. Vac. Sci. Technol. A 37, 040802 (2019).

    Article  Google Scholar 

  13. Chefer, V. I., Thompson, A. C., Zapata, A. & Shippenberg, T. S. Overview of brain microdialysis. Curr. Protoc. Neurosci. Chapter 7, Unit 7.1 (2009).

  14. Nakatsuka, N. & Andrews, A. M. Differentiating siblings: the case of dopamine and norepinephrine. ACS Chem. Neurosci. 8, 218–220 (2017).

    Article  CAS  Google Scholar 

  15. Ngo, K. T., Varner, E. L., Michael, A. C. & Weber, S. G. Monitoring dopamine responses to potassium ion and nomifensine by in vivo microdialysis with online liquid chromatography at one-minute resolution. ACS Chem. Neurosci. 8, 329–338 (2017).

    Article  CAS  Google Scholar 

  16. Sames, D., Dunn, M., Karpowicz, R. J. & Sulzer, D. Visualizing neurotransmitter secretion at individual synapses. ACS Chem. Neurosci. 4, 648–651 (2013).

    Article  CAS  Google Scholar 

  17. Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

    Article  Google Scholar 

  18. Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018).

    Article  CAS  Google Scholar 

  19. Beyene, A. G. et al. Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor. Sci. Adv. 5, eaaw3108 (2019).

    Article  CAS  Google Scholar 

  20. Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 8, 723–730 (2014).

    Article  CAS  Google Scholar 

  21. O’Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  Google Scholar 

  22. Beyene, A. G. et al. Ultralarge modulation of fluorescence by neuromodulators in carbon nanotubes functionalized with self-assembled oligonucleotide rings. Nano Lett. 18, 6995–7003 (2018).

    Article  CAS  Google Scholar 

  23. Jeong, S. et al. High-throughput evolution of near-infrared serotonin nanosensors. Sci. Adv. 5, 3771–3789 (2019).

    Article  Google Scholar 

  24. Li, C. & Wang, Q. Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window. ACS Nano 12, 9654–9659 (2018).

    Article  CAS  Google Scholar 

  25. Kruss, S. et al. High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. Proc. Natl. Acad. Sci. USA 114, 1789–1794 (2017).

    Article  CAS  Google Scholar 

  26. Dinarvand, M. et al. Near-infrared imaging of serotonin release from cells with fluorescent nanosensors. Nano Lett 19, 6604–6611 (2019).

    Article  CAS  Google Scholar 

  27. Del Bonis-O’Donnel, J. T. et al. Engineering molecular recognition with bio-mimetic polymers on single walled carbon nanotubes. J. Vis. Exp. 119, 55030 (2017).

    Google Scholar 

  28. Zhang, J. et al. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat. Nanotechnol. 8, 959–968 (2013).

    Article  CAS  Google Scholar 

  29. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  30. Kida, H., Sakimoto, Y. & Mitsushima, D. Slice patch clamp technique for analyzing learning-induced plasticity. J. Vis. Exp. 129, 55876 (2017).

    Google Scholar 

  31. Geiger, B. M., Frank, L. E., Caldera-Siu, A. D. & Pothos, E. N. Survivable stereotaxic surgery in rodents. J. Vis. Exp. 20, 880 (2008).

    Google Scholar 

  32. Romano, S. A. et al. An integrated calcium imaging processing toolbox for the analysis of neuronal population dynamics. PLoS Comput. Biol. 13, e1005526 (2017).

    Article  Google Scholar 

  33. Pnevmatikakis, E. A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285–299 (2016).

    Article  CAS  Google Scholar 

  34. Jeng, E. S.-H. The Investigation of Interactions between Single Walled Carbon Nanotubes and Flexible Chain Molecules. Thesis, Massachusetts Institute of Technology (2010).

  35. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9,, 671–675 (2012).

    Article  Google Scholar 

  36. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9,, 676–682 (2012).

    Article  Google Scholar 

  37. Van Der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

    Article  Google Scholar 

  38. Otsu, N. Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. SMC-9, 62–66 (1979).

  39. Sorensen, J., Wiklendt, L., Hibberd, T., Costa, M. & Spencer, N. J. Techniques to identify and temporally correlate calcium transients between multiple regions of interest in vertebrate neural circuits. J. Neurophysiol. 117, 885–902 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge prior work from A.G.B. presented in this protocol and previously published by Beyene et al.19. We acknowledge support of NIH MIRA award R35 (to M.P.L.), a Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI) (to M.P.L.), the Simons Foundation (to M.P.L.), a Stanley Fahn PDF Junior Faculty Grant with Award No. PF-JFA-1760 (to M.P.L.), a Beckman Foundation Young Investigator Award (to M.P.L.), a CZI Deep-Tissue Imaging Award (to M.P.L.) and a DARPA Young Investigator Award (to M.P.L.). M.P.L. is a Chan Zuckerberg Biohub investigator. S.J.Y. acknowledges the support of NSF Graduate Research Fellowships (NSF DGE 1752814). J.T.D.B.-O. is supported by the Department of Defense office of the Congressionally Directed Medical Research Programs (CDMRP) Parkinson’s Research Program (PRP) Early Investigator Award.

Author information

Authors and Affiliations

Authors

Contributions

A.G.B. and M.P.L. designed the experiments. J.T.D.B.-O. designed and built the microscope system and wrote the analysis software package. A.G.B., S.J.Y. and J.T.D.B.-O. performed the experiments. A.G.B., S.J.Y. and J.T.D.B.-O. analyzed the data and created the figures. S.J.Y. and J.T.D.B.-O. wrote the manuscript. All authors approved the manuscript.

Corresponding author

Correspondence to Markita P. Landry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Beyene, A. G. et al. Sci. Adv. 5, eaaw3108 (2019): https://doi.org/10.1126/sciadv.aaw3108

Jeong, S. et al. Sci. Adv. 5, 3771–3789 (2019): https://doi.org/10.1126/sciadv.aay3771

Yang, D. et al. ACS Nano. 14, 13794–13805 (2020): https://doi.org/10.1021/acsnano.0c06154

Beyene, A. G. et al. Nano Lett. 18, 6995–7003 (2018): https://doi.org/10.1021/acs.nanolett.8b02937

Supplementary information

Supplementary Video 1

Supplementary Video 1

Supplementary Video 2

Supplementary Video 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S.J., Del Bonis-O’Donnell, J.T., Beyene, A.G. et al. Near-infrared catecholamine nanosensors for high spatiotemporal dopamine imaging. Nat Protoc 16, 3026–3048 (2021). https://doi.org/10.1038/s41596-021-00530-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00530-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing