Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tutorial: structural characterization of isolated metal atoms and subnanometric metal clusters in zeolites


The encapsulation of subnanometric metal entities (isolated metal atoms and metal clusters with a few atoms) in porous materials such as zeolites can be an effective strategy for the stabilization of those metal species and therefore can be further used for a variety of catalytic reactions. However, owing to the complexity of zeolite structures and their low stability under the electron beam, it is challenging to obtain atomic-level structural information of the subnanometric metal species encapsulated in zeolite crystallites. In this protocol, we show the application of a scanning transmission electron microscopy (STEM) technique that records simultaneously the high-angle annular dark-field (HAADF) images and integrated differential phase-contrast (iDPC) images for structural characterization of subnanometric Pt and Sn species within MFI zeolite. The approach relies on the use of a computational model to simulate results obtained under different conditions where the metals are present in different positions within the zeolite. This imaging technique allows to obtain simultaneously the spatial information of heavy elements (Pt and Sn in this work) and the zeolite framework structure, enabling direct determination of the location of the subnanometric metal species. Moreover, we also present the combination of other spectroscopy techniques as complementary tools for the STEM–iDPC imaging technique to obtain global understanding and insights on the spatial distributions of subnanometric metal species in zeolite structure. These structural insights can provide guidelines for the rational design of uniform metal–zeolite materials for catalytic applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: One-pot synthesis of Pt–zeolite materials.
Fig. 2: XRD patterns of the Pt–MFI zeolites with different chemical compositions.
Fig. 3: FESEM images of Pt–zeolite materials.
Fig. 4: HAADF–STEM images of K-free Pt@MFI-Air sample after calcination in air.
Fig. 5: HAADF–STEM images of K-Pt@MFI-Air sample after calcination in air.
Fig. 6: HAADF–STEM images of K-free Pt@MFI sample after calcination in air at 600 °C and then further reduction by H2 at 600 °C.
Fig. 7: HAADF–STEM images of K-Pt@MFI sample after calcination in air at 600 °C and then further reduction by H2 at 600 °C.
Fig. 8: STEM image of Pt–zeolite samples after reduction by H2 at 600 °C.
Fig. 9
Fig. 10: Stability test of the K-PtSn@MFI sample under the beam.
Fig. 11: Influence of defocus value on the imaging of isolated Pt atoms.
Fig. 12: Influence of defocus value on the imaging of isolated Sn atoms.
Fig. 13: Image simulation of isolated Pt and Sn atoms in MFI zeolite.
Fig. 14: Image simulation of Pt and Sn species in MFI zeolite.
Fig. 15: Image simulation of Pt and Sn species in MFI zeolite.
Fig. 16: Image simulation of Pt clusters comprising interaction with Sn species in MFI zeolite.
Fig. 17: Characterization of K-Pt@MFI-Air sample by STEM–iDPC imaging technique.
Fig. 18: Identification of the location of subnanometric Pt clusters within the MFI structure.
Fig. 19: Correlation between the simulated image and experimental STEM–iDPC images.
Fig. 20: Chemical analysis on the K-PtSn@MFI sample by EDS.
Fig. 21: K-means clustering analysis on the simulated images.
Fig. 22: Distinguishing subnanometric Pt and Sn species by K-means clustering analysis.
Fig. 23: PtSn clusters in experimental HAADF–STEM images.
Fig. 24: Characterization of the Pt–zeolite materials after calcination in air by XAS.
Fig. 25: Characterization of Pt–zeolite materials by XAS.
Fig. 26: Comparison of the Sn-edge XAS results of K-PtSn@MFI-Air sample with Sn-Beta.
Fig. 27: CO-IR spectra of K-PtSn@MFI and K-Pt@MFI samples.

Data availability

Data supporting this publication are available from the corresponding author upon reasonable request.

Code availability

The code and scripts used in this work are available from the corresponding author upon reasonable request.


  1. 1.

    Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012).

    CAS  PubMed  Google Scholar 

  2. 2.

    Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Thomas, J. M., Raja, R. & Lewis, D. W. Single-site heterogeneous catalysts. Angew. Chem. Int. Ed. 44, 6456–6482 (2005).

    CAS  Google Scholar 

  4. 4.

    Hansen, T. W. et al. Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 1508–1510 (2001).

    CAS  PubMed  Google Scholar 

  5. 5.

    Hwang, S., Chen, X., Zhou, G. & Su, D. In situ transmission electron microscopy on energy-related catalysis. Adv. Energy Mater. (2019).

  6. 6.

    Li, Z. et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem. Rev. 120, 623–682 (2019).

    PubMed  Google Scholar 

  7. 7.

    Pelletier, J. D. & Basset, J. M. Catalysis by design: well-defined single-site heterogeneous catalysts. Acc. Chem. Res. 49, 664–677 (2016).

    CAS  PubMed  Google Scholar 

  8. 8.

    Kulkarni, A., Lobo-Lapidus, R. J. & Gates, B. C. Metal clusters on supports: synthesis, structure, reactivity, and catalytic properties. Chem. Commun. 46, 5997–6015 (2010).

    CAS  Google Scholar 

  9. 9.

    Liu, L. et al. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9, 574 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A. & Katz, A. Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catal. Sci. Technol. 7, 4259–4275 (2017).

    CAS  Google Scholar 

  11. 11.

    Li, H., Wang, M., Luo, L. & Zeng, J. Static regulation and dynamic evolution of single-atom catalysts in thermal catalytic reactions. Adv. Sci 6, 1801471 (2019).

    Google Scholar 

  12. 12.

    Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019).

    CAS  PubMed  Google Scholar 

  13. 13.

    Juneau, M. et al. Characterization of metal–zeolite composite catalysts: determining the environment of the active phase. ChemCatChem (2019).

  14. 14.

    Shamzhy, M., Opanasenko, M., Concepcion, P. & Martinez, A. New trends in tailoring active sites in zeolite-based catalysts. Chem. Soc. Rev. 48, 1095–1149 (2019).

    CAS  PubMed  Google Scholar 

  15. 15.

    Weckhuysen, B. M. Stable platinum in a zeolite channel. Nat. Mater. 18, 778–779 (2019).

    CAS  PubMed  Google Scholar 

  16. 16.

    Gai, P. L. & Calvino, J. J. Electron microscopy in the catalysis of alkane oxidation, environmental control, and alternative energy sources. Annu. Rev. Mater. Res. 35, 465–504 (2005).

    CAS  Google Scholar 

  17. 17.

    Gates, B. C. Atomically dispersed supported metal catalysts: seeing is believing. Trends Chem. 1, 99–110 (2019).

    CAS  Google Scholar 

  18. 18.

    Yang, S. et al. Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites. Angew. Chem. Int. Ed. 56, 12553–12556 (2017).

    CAS  Google Scholar 

  19. 19.

    Lupulescu, A. I. & Rimer, J. D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science 344, 729–732 (2014).

    CAS  PubMed  Google Scholar 

  20. 20.

    Anderson, M. W. et al. Modern microscopy methods for the structural study of porous materials. Chem. Commun. (8), 907–916 (2004).

  21. 21.

    Mayoral, A., Carey, T., Anderson, P. A., Lubk, A. & Diaz, I. Atomic resolution analysis of silver ion-exchanged zeolite A. Angew. Chem. Int. Ed. 50, 11230–11233 (2011).

    CAS  Google Scholar 

  22. 22.

    Lu, J., Aydin, C., Browning, N. D. & Gates, B. C. Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. Int. Ed. 51, 5842–5846 (2012).

    CAS  Google Scholar 

  23. 23.

    Ortalan, V., Uzun, A., Gates, B. C. & Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat. Nanotechnol. 5, 506–510 (2010).

    CAS  PubMed  Google Scholar 

  24. 24.

    Yang, M. et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).

    CAS  PubMed  Google Scholar 

  25. 25.

    Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    CAS  PubMed  Google Scholar 

  26. 26.

    Slater, B., Ohsuna, T., Liu, Z. & Terasaki, O. Insights into the crystal growth mechanisms of zeolites from combined experimental imaging and theoretical studies. Faraday Discussions 136, 125–141 (2007).

    CAS  PubMed  Google Scholar 

  27. 27.

    Diaz, I. & Mayoral, A. TEM studies of zeolites and ordered mesoporous materials. Micron 42, 512–527 (2011).

    CAS  PubMed  Google Scholar 

  28. 28.

    Wan, W., Su, J., Zou, X. D. & Willhammar, T. Transmission electron microscopy as an important tool for characterization of zeolite structures. Inorg. Chem. Frontiers 5, 2836–2855 (2018).

    CAS  Google Scholar 

  29. 29.

    Mishra, R., Ishikawa, R., Lupini, A. R. & Pennycook, S. J. Single-atom dynamics in scanning transmission electron microscopy. MRS Bulletin 42, 644–652 (2017).

    CAS  Google Scholar 

  30. 30.

    DeLaRiva, A. T., Hansen, T. W., Challa, S. R. & Datye, A. K. In situ transmission electron microscopy of catalyst sintering. J. Catal. 308, 291–305 (2013).

    CAS  Google Scholar 

  31. 31.

    Lazic, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016).

    CAS  PubMed  Google Scholar 

  32. 32.

    Shen, B. et al. Atomic spatial and temporal imaging of local structures and light elements inside zeolite frameworks. Adv. Mater. e1906103 (2019).

  33. 33.

    Egerton, R. F. & Watanabe, M. Characterization of single-atom catalysts by EELS and EDX spectroscopy. Ultramicroscopy 193, 111–117 (2018).

    CAS  PubMed  Google Scholar 

  34. 34.

    Bonilla, G. et al. Zeolite (MFI) crystal morphology control using organic structure-directing agents. Chem. Mater. 16, 5697–5705 (2004).

    CAS  Google Scholar 

  35. 35.

    Karwacki, L. et al. Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers. Nat. Mater. 8, 959–965 (2009).

    CAS  PubMed  Google Scholar 

  36. 36.

    Grand, J. et al. One-pot synthesis of silanol-free nanosized MFI zeolite. Nat. Mater. 16, 1010–1015 (2017).

    CAS  PubMed  Google Scholar 

  37. 37.

    Varela, M. et al. Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu. Rev. Mater. Res. 35, 539–569 (2005).

    CAS  Google Scholar 

  38. 38.

    Mitchell, DavidR. G. & Mitchell, J. B. Nancarrow probe current determination in analytical TEM/STEM and its application to the characterization of large area EDS detectors. Microscopy Res. Technique 78, 886–893 (2015).

    CAS  Google Scholar 

  39. 39.

    Erni, R. Aberration-Corrected Imaging in Transmission Electron Microscopy (Imperial College Press, 2010).

  40. 40.

    Díaz, I., Kokkoli, E., Terasaki, O. & Tsapatsis, M. Surface structure of zeolite (MFI) crystals. Chem. Mater. 16, 5226–5232 (2004).

    Google Scholar 

  41. 41.

    Bernal, S. et al. The interpretation of HREM images of supported metal catalysts using image simulation: profile view images. Ultramicroscopy 72, 135–164 (1998).

    CAS  Google Scholar 

  42. 42.

    Kirkland, E. J. Advanced Computing in Electron Microscopy (Springer, 2010).

  43. 43.

    Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M. & Buglass, J. G. Delaminated zeolite precursors as selective acidic catalysts. Nature 396, 353–356 (1998).

    CAS  Google Scholar 

  44. 44.

    Pei, Y. et al. Catalytic properties of intermetallic platinum–tin nanoparticles with non-stoichiometric compositions. J. Catal. 374, 136–142 (2019).

    CAS  Google Scholar 

  45. 45.

    Moliner, M. et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 138, 15743–15750 (2016).

    CAS  PubMed  Google Scholar 

  46. 46.

    de Graaf, J., van Dillen, A. J., de Jong, K. P. & Koningsberger, D. C. Preparation of highly dispersed Pt particles in zeolite Y with a narrow particle size distribution: characterization by hydrogen chemisorption, TEM, EXAFS spectroscopy, and particle modeling. J. Catal. 203, 307–321 (2001).

    Google Scholar 

  47. 47.

    Bare, S. R. et al. Uniform catalytic site in Sn-beta-zeolite determined using X-ray absorption fine structure. J. Am. Chem. Soc. 127, 12924–12932 (2005).

    CAS  PubMed  Google Scholar 

  48. 48.

    Hammond, C. et al. Identification of active and spectator Sn sites in Sn-beta following solid-state stannation, and consequences for Lewis acid catalysis. ChemCatChem 7, 3322–3331 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Liu, L. et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites? ACS Catal. 9, 10626–10639 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Derevyannikova, E. A. et al. Structural insight into strong Pt–CeO2 interaction: from single Pt atoms to PtOx clusters. J. Phys. Chem. C 123, 1320–1334 (2018).

    Google Scholar 

  51. 51.

    Sun, Q. et al. Subnanometer bimetallic Pt–Zn clusters in zeolites for propane dehydrogenation. Angew. Chem. Int. Ed. (2020).

  52. 52.

    Concepcion, P. et al. The promotional effect of Sn-beta zeolites on platinum for the selective hydrogenation of alpha,beta-unsaturated aldehydes. Phys. Chem. Chem. Phys. 15, 12048–12055 (2013).

    CAS  PubMed  Google Scholar 

  53. 53.

    Heiz, U., Sanchez, A., Abbet, S. & Schneider, W. D. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J. Am. Chem. Soc. 121, 3214–3217 (1999).

    CAS  Google Scholar 

  54. 54.

    Serykh, A. I. et al. Stable subnanometre Pt clusters in zeolite NaX via stoichiometric carbonyl complexes: probing of negative charge by DRIFT spectroscopy of adsorbed CO and H2. Phys. Chem. Chem. Phys. 2, 5647–5652 (2000).

    CAS  Google Scholar 

  55. 55.

    Drozdová, L. et al. Subnanometer platinum clusters in zeolite NaEMT via stoichiometric carbonyl clusters. Microporous Mesoporous Mater. 35–36, 511–519 (2000).

    Google Scholar 

  56. 56.

    Mishra, D. K., Dabbawala, A. A. & Hwang, J.-S. Ruthenium nanoparticles supported on zeolite Y as an efficient catalyst for selective hydrogenation of xylose to xylitol. J. Mol. Catal. A: Chem. 376, 63–70 (2013).

    CAS  Google Scholar 

  57. 57.

    Visser, T. et al. Promotion effects in the oxidation of CO over zeolite-supported Pt nanoparticles. J. Phys. Chem. B 109, 3822–3831 (2005).

    CAS  PubMed  Google Scholar 

  58. 58.

    Rivallan, M. et al. Platinum sintering on H-ZSM-5 followed by chemometrics of CO adsorption and 2D pressure-jump IR spectroscopy of adsorbed species. Angew. Chem. Int. Ed. 49, 785–789 (2010).

    CAS  Google Scholar 

  59. 59.

    Balakrishnan, K. A chemisorption and XPS study of bimetallic Pt-Sn/Al2O3 catalysts. J. Catal. 127, 287–306 (1991).

    CAS  Google Scholar 

  60. 60.

    Panja, C. & Koel, B. E. Probing the influence of alloyed Sn on Pt(100) surface chemistry by CO chemisorption. Israel J. Chem 38, 365–374 (1998).

    CAS  Google Scholar 

  61. 61.

    Chen, Y. et al. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2, 1242–1264 (2018).

    CAS  Google Scholar 

  62. 62.

    Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    CAS  Google Scholar 

  63. 63.

    Zhang, H., Liu, G., Shi, L. & Ye, J. Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8, 1701343 (2018).

    Google Scholar 

  64. 64.

    Wiktor, C., Meledina, M., Turner, S., Lebedev, O. I. & Fischer, R. A. Transmission electron microscopy on metal–organic frameworks – a review. J. Mater. Chem. A 5, 14969–14989 (2017).

    CAS  Google Scholar 

  65. 65.

    Liu, L. et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem. Int. Ed. 59, 819–825 (2020).

    CAS  Google Scholar 

  66. 66.

    Zuo, Q. et al. Ultrathin metal–organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem. Int. Ed. 58, 10198–10203 (2019).

    CAS  Google Scholar 

  67. 67.

    Liu, L. et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622–628 (2019).

    CAS  PubMed  Google Scholar 

  68. 68.

    Zhou, Y. et al. Local structure evolvement in MOF single crystals unveiled by scanning transmission electron microscopy. Chem. Mater. 32, 4966–4972 (2020).

  69. 69.

    Borisevich, A. Y., Lupini, A. R. & Pennycook, S. J. Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl Acad. Sci. USA 103, 3044–3048 (2006).

    CAS  PubMed  Google Scholar 

  70. 70.

    Zecevic, J., van der Eerden, A. M., Friedrich, H., de Jongh, P. E. & de Jong, K. P. Heterogeneities of the nanostructure of platinum/zeolite y catalysts revealed by electron tomography. ACS Nano 7, 3698–3705 (2013).

    CAS  PubMed  Google Scholar 

  71. 71.

    Schmidt, J. E., Oord, R., Guo, W., Poplawsky, J. D. & Weckhuysen, B. M. Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts. Nat. Commun. 8, 1666 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Chen, Z. et al. Direct synthesis of core-shell MFI zeolites with spatially tapered trimodal mesopores via controlled orthogonal self-assembly. Nanoscale 11, 16667–16676 (2019).

    CAS  PubMed  Google Scholar 

  73. 73.

    Kliewer, C. E. in Zeolite Characterization and Catalysis (eds. Chester, A. W. & Derouane, E. G.) (Springer, 2009).

  74. 74.

    Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016).

    CAS  PubMed  Google Scholar 

  75. 75.

    Li, Z. et al. Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 1, 349–355 (2018).

    CAS  Google Scholar 

  76. 76.

    Goldsmith, B. R., Peters, B., Johnson, J. K., Gates, B. C. & Scott, S. L. Beyond ordered materials: understanding catalytic sites on amorphous solids. ACS Catal. 7, 7543–7557 (2017).

    CAS  Google Scholar 

  77. 77.

    van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    CAS  Google Scholar 

  78. 78.

    Hodnik, N., Dehm, G. & Mayrhofer, K. J. Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc. Chem. Res. 49, 2015–2022 (2016).

    CAS  PubMed  Google Scholar 

  79. 79.

    Boyes, E. D., LaGrow, A. P., Ward, M. R., Mitchell, R. W. & Gai, P. L. Single atom dynamics in chemical reactions. Acc. Chem. Res. 53, 390–399 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Nakamura, E. Atomic-resolution transmission electron microscopic movies for study of organic molecules, assemblies, and reactions: the first 10 years of development. Acc. Chem. Res. 50, 1281–1292 (2017).

    CAS  PubMed  Google Scholar 

  81. 81.

    Li, T. et al. Cryo-TEM and electron tomography reveal leaching-induced pore formation in ZSM-5 zeolite. J. Mater. Chem. A 7, 1442–1446 (2019).

    CAS  Google Scholar 

  82. 82.

    Li, Y. et al. Cryo-EM structures of atomic surfaces and host–guest chemistry in metal-organic frameworks. Matter 1, 428–438 (2019).

    Google Scholar 

  83. 83.

    Liu, L. & Corma, A. Evolution of isolated atoms and clusters in catalysis. Trends Chem. 2, 383–400 (2020).

    CAS  Google Scholar 

  84. 84.

    Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018).

    CAS  PubMed  Google Scholar 

  85. 85.

    De Wael, A., De Backer, A., Jones, L., Nellist, P. D. & Van Aert, S. Hybrid statistics-simulations based method for atom-counting from ADF STEM images. Ultramicroscopy 177, 69–77 (2017).

    PubMed  Google Scholar 

  86. 86.

    Hwang, J., Zhang, J. Y., D’Alfonso, A. J., Allen, L. J. & Stemmer, S. Three-dimensional imaging of individual dopant atoms in SrTiO3. Phys. Rev. Lett. 111, 266101 (2013).

    PubMed  Google Scholar 

Download references


This work was supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the ‘Severo Ochoa Program’ (SEV-2016-0683). The authors also thank the Microscopy Service of UPV for the TEM and STEM measurements. The XAS measurements were carried out in CLAESS beamline of ALBA synchrotron. HR STEM measurements were performed at the DME-UCA node of the ELECMI Singular Infrastructure at Cadiz University, with financial support from FEDER/MINECO (MAT2017-87579-R and MAT2016-81118-P). The authors thank C. W. Lopes and P. Concepcion for their help with the analysis of spectroscopic results. The financial support from ExxonMobil on this project is also gratefully acknowledged.

Author information




A.C. conceived the project and directed the study. L.L. carried out the synthesis and characterizations of the Pt–zeolite materials. M.L.-H. and J.J.C. carried out the HR STEM measurements, image analysis and simulations, with assistance from L.L. All authors discussed the results and contributed to the formation of the manuscript.

Corresponding author

Correspondence to Avelino Corma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks M. A. Goula, Laurent Piccolo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Liu, L. et al. Nat. Mater. 18, 866−873 (2019):

Key data used in this protocol

Liu, L. et al. Nat. Mater. 18, 866−873 (2019):

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Lopez-Haro, M., Calvino, J.J. et al. Tutorial: structural characterization of isolated metal atoms and subnanometric metal clusters in zeolites. Nat Protoc 16, 1871–1906 (2021).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing