Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The maternal serum metabolome by multisegment injection-capillary electrophoresis-mass spectrometry: a high-throughput platform and standardized data workflow for large-scale epidemiological studies

An Author Correction to this article was published on 17 May 2021

This article has been updated


A standardized data workflow is described for large-scale serum metabolomic studies using multisegment injection-capillary electrophoresis-mass spectrometry. Multiplexed separations increase throughput (<4 min/sample) for quantitative determination of 66 polar/ionic metabolites in serum filtrates consistently detected (coefficient of variance (CV) <30%) with high frequency (>75%) from a multi-ethnic cohort of pregnant women (n = 1,004). We outline a validated protocol implemented in four batches over a 7-month period that includes details on preventive maintenance, sample workup, data preprocessing and metabolite authentication. We achieve stringent quality control (QC) and robust batch correction of long-term signal drift with good mutual agreement for a wide range of metabolites, including serum glucose as compared to a clinical chemistry analyzer (mean bias = 11%, n = 668). Control charts for a recovery standard (mean CV = 12%, n = 2,412) and serum metabolites in QC samples (median CV = 13%, n = 202) demonstrate acceptable intermediate precision with a median intraclass coefficient of 0.87. We also report reference intervals for 53 serum metabolites from a diverse population of women in their second trimester of pregnancy.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Data workflow for characterization of the maternal serum metabolome by MSI-CE-MS from a multi-ethnic birth cohort of pregnant women.
Fig. 2: Targeted profiling of known serum metabolites and their unambiguous identification and quantification.
Fig. 3: Nontargeted profiling and authentication of reliably measured ions with putative identification of unknown serum metabolites.
Fig. 4: Schematic overview of data workflow for targeted and nontargeted serum metabolomic analyses using MSI-CE-MS.
Fig. 5: Control charts are used to review data quality of the serum maternal metabolome, including detection of potential batch effects in longitudinal studies.
Fig. 6: 2D scores plot using principal component analysis that compares the technical precision from repeated analysis of pooled serum QC samples relative to the biological variance of the serum metabolome among second trimester pregnant women.
Fig. 7: Interlaboratory method comparison of reported fasting serum glucose concentrations in second trimester pregnant women.
Fig. 8: Intermethod comparison of mean serum metabolite concentrations measured by MSI-CE-MS in pregnant women from FAMILY and START cohorts (n = 600).
Fig. 9: Differences in the serum maternal metabolome as a function of birth cohort ethnicity, fasting status, and regional center from across Canada.

Data availability

Full datasets generated and/or analyzed in the current study are not publicly available since participants in the FAMILY, CHILD, START and ABC cohorts did not consent to public sharing of their data at the time of recruitment. Datasets can be obatined from the corresponding author on reasonable request.

Software availability

Our protocol used vendor-specific software (Agilent Technologies Inc.) for processing raw data generated by (Q)TOF mass analyzers. We are developing customized open-access software for processing MSI-CE-MS data in future work.

Change history


  1. 1.

    Viant, M. R., Kurland, I. J., Jones, M. R. & Dunn, W. B. How close are we to complete annotation of metabolomes? Curr. Opin. Chem. Biol. 36, 64–69 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Wishart, D. S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 15, 473–484 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    Zhou, W. et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569, 663–671 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Brennan, L. & Hu, F. B. Metabolomics-based dietary biomarkers in nutritional epidemiology—current status and future opportunities. Mol. Nutr. Food Res. 63, 1–5 (2019).

    Google Scholar 

  6. 6.

    Scalbert, A. et al. Narrative review the food metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 99, 1286–1308 (2014).

    CAS  PubMed  Google Scholar 

  7. 7.

    Psychogios, N. et al. The human serum metabolome. PLoS ONE 6, e16957 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kuehnbaum, N. L. & Britz-McKibbin, P. New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem. Rev. 113, 2437–2468 (2013).

    CAS  PubMed  Google Scholar 

  9. 9.

    Tzoulaki, I., Ebbels, T. M. D., Valdes, A., Elliott, P. & Ioannidis, J. P. A. Design and analysis of metabolomics studies in epidemiologic research: a primer on-omic technologies. Am. J. Epidemiol. 180, 129–139 (2014).

    PubMed  Google Scholar 

  10. 10.

    Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011).

    CAS  PubMed  Google Scholar 

  11. 11.

    Würtz, P. et al. Metabolic signatures of birthweight in 18 288 adolescents and adults. Int. J. Epidemiol. 45, 1539–1550 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Playdon, M. C. et al. Metabolomics analytics workflow for epidemiological research: Perspectives from the consortium of metabolomics studies (COMETS). Metabolites 9, 145 (2019).

    CAS  PubMed Central  Google Scholar 

  13. 13.

    Kuehnbaum, N. L., Kormendi, A. & Britz-McKibbin, P. Multisegment injection-capillary electrophoresis-mass spectrometry: a high-throughput platform for metabolomics with high data fidelity. Anal. Chem. 85, 10664–10669 (2013).

    CAS  PubMed  Google Scholar 

  14. 14.

    Nori de Macedo, A. et al. The sweat metabolome of screen-positive cystic fibrosis infants: Revealing mechanisms beyond impaired chloride transport. ACS Cent. Sci. 3, 904–913 (2017).

    Google Scholar 

  15. 15.

    DiBattista, A. et al. Metabolic signatures of cystic fibrosis identified in dried blood spots for newborn screening without carrier identification. J. Proteome Res. 18, 841–854 (2019).

    CAS  PubMed  Google Scholar 

  16. 16.

    Saoi, M. et al. Characterization of the human skeletal muscle metabolome for elucidating the mechanisms of bicarbonate ingestion on strenuous interval exercise. Anal. Chem. 91, 4709–4718 (2019).

    CAS  PubMed  Google Scholar 

  17. 17.

    Souza, R. T. et al. Metabolomics applied to maternal and perinatal health: a review of new frontiers with a translation potential. Clinics 74, 1–12 (2019).

    Google Scholar 

  18. 18.

    Kadakia, R. et al. Maternal metabolites during pregnancy are associated with newborn outcomes and hyperinsulinaemia across ancestries. Diabetologia 62, 473–484 (2019).

    CAS  PubMed  Google Scholar 

  19. 19.

    Blaženović, I., Kind, T., Ji, J. & Fiehn, O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 8, 31 (2018).

    PubMed Central  Google Scholar 

  20. 20.

    Southam, A. D., Weber, R. J. M., Engel, J., Jones, M. R. & Viant, M. R. A complete workflow for high-resolution spectral-stitching nanoelectrospray direct-infusion mass-spectrometry-based metabolomics and lipidomics. Nat. Protoc. 12, 255–273 (2017).

    CAS  Google Scholar 

  21. 21.

    Fuhrer, T. & Zamboni, N. High-throughput discovery metabolomics. Curr. Opin. Biotechnol. 31, 73–78 (2015).

    CAS  PubMed  Google Scholar 

  22. 22.

    Levy, A. J. et al. Recent progress in metabolomics using ion mobility-mass spectrometry. TrAC Trends Anal. Chem 116, 274–281 (2019).

    CAS  Google Scholar 

  23. 23.

    Würtz, P. et al. Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on -omic technologies. Am. J. Epidemiol. 186, 1084–1096 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wishart, D. S. NMR metabolomics: a look ahead. J. Magn. Reson. 306, 155–161 (2019).

    CAS  PubMed  Google Scholar 

  25. 25.

    Yu, B. et al. The consortium of metabolomics studies (COMETS): metabolomics in 47 prospective cohort studies. Am. J. Epidemiol. 188, 991–1012 (2019).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Miggiels, P., Wouters, B., van Westen, G. J. P., Dubbelman, A.-C. & Hankemeier, T. Novel technologies for metabolomics: more for less. Trends Anal. Chem. 120, 115323 (2019).

    Google Scholar 

  27. 27.

    Büscher, J. M., Czernik, D., Ewald, J. C., Sauer, U. & Zamboni, N. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal. Chem. 81, 2135–2143 (2009).

    PubMed  Google Scholar 

  28. 28.

    Soga, T. et al. Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal. Chem. 81, 6165–6174 (2009).

    CAS  PubMed  Google Scholar 

  29. 29.

    Boizard, F. et al. A capillary electrophoresis coupled to mass spectrometry pipeline for long term comparable assessment of the urinary metabolome. Sci. Rep. 6, 1–17 (2016).

    Google Scholar 

  30. 30.

    Harada, S. et al. Metabolomic profiling reveals novel biomarkers of alcohol intake and alcohol-induced liver injury in community-dwelling men. Environ. Health Prev. Med. 21, 18–26 (2016).

    CAS  PubMed  Google Scholar 

  31. 31.

    Fukai, K. et al. Metabolic profiling of total physical activity and sedentary behavior in community dwelling men. PLoS ONE 11, 1–14 (2016).

    Google Scholar 

  32. 32.

    Belczacka, I. et al. Urinary CE-MS peptide marker pattern for detection of solid tumors. Sci. Rep. 8, 1–11 (2018).

    CAS  Google Scholar 

  33. 33.

    Wild, J., Shanmuganathan, M., Hayashi, M., Potter, M. & Britz-McKibbin, P. Metabolomics for improved treatment monitoring of phenylketonuria: Urinary biomarkers for non-invasive assessment of dietary adherence and nutritional deficiencies. Analyst 144, 6595–6608 (2019).

    CAS  PubMed  Google Scholar 

  34. 34.

    DiBattista, A. et al. Temporal signal pattern recognition in mass spectrometry: a method for rapid identification and accurate quantification of biomarkers for inborn errors of metabolism with quality assurance. Anal. Chem. 89, 8112–8121 (2017).

    CAS  PubMed  Google Scholar 

  35. 35.

    Azab, S., Ly, R. & Britz-McKibbin, P. Robust method for high-throughput screening of fatty acids by multisegment injection-nonaqueous capillary electrophoresis-mass spectrometry with stringent quality control. Anal. Chem. 91, 2329–2336 (2019).

    CAS  PubMed  Google Scholar 

  36. 36.

    Harada, S. et al. Reliability of plasma polar metabolite concentrations in a large-scale cohort study using capillary electrophoresis-mass spectrometry. PLoS ONE 13, 1–16 (2018).

    Google Scholar 

  37. 37.

    Mahieu, N. G. & Patti, G. J. Systems-level annotation of a metabolomics data set reduces 25 000 features to fewer than 1000 unique metabolites. Anal. Chem. 89, 10397–10406 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Yamamoto, M., Pinto-Sanchez, M. I., Bercik, P. & Britz-McKibbin, P. Metabolomics reveals elevated urinary excretion of collagen degradation and epithelial cell turnover products in irritable bowel syndrome patients. Metabolomics 15, 1–18 (2019).

    CAS  Google Scholar 

  39. 39.

    Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    De Souza, R. J. et al. The influence of maternal and infant nutrition on cardiometabolic traits: Novel findings and future research directions from four Canadian birth cohort studies. Proc. Nutr. Soc. 78, 351–361 (2019).

    PubMed  Google Scholar 

  41. 41.

    Wahi, G. et al. Aboriginal birth cohort (ABC): a prospective cohort study of early life determinants of adiposity and associated risk factors among Aboriginal people in Canada. BMC Public Health 13, 608 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Subbarao, P. et al. The Canadian Healthy Infant Longitudinal Development (CHILD) study: examining developmental origins of allergy and asthma. Thorax 70, 998–1000 (2015).

    PubMed  Google Scholar 

  43. 43.

    Morrison, K. M. et al. The Family Atherosclerosis Monitoring In earLY life (FAMILY) study. Rationale, design, and baseline data of a study examining the early determinants of atherosclerosis. Am. Heart J. 158, 533–539 (2009).

    PubMed  Google Scholar 

  44. 44.

    Anand, S. S. et al. Rationale and design of South Asian Birth Cohort (START): A Canada-India collaborative study. BMC Public Health 13, 1 (2013).

    Google Scholar 

  45. 45.

    De Souza, R. J. et al. Harmonization of food-frequency questionnaires and dietary pattern analysis in 4 ethnically diverse birth cohorts. J. Nutr. 146, 2343–2350 (2016).

    PubMed  Google Scholar 

  46. 46.

    Wellington, N. et al. Metabolic trajectories following contrasting Prudent and Western diets from food provisions: identifying robust biomarkers of short-term changes in habitual diet. Nutrients 11, 2407 (2019).

    CAS  PubMed Central  Google Scholar 

  47. 47.

    Al-Ibrahim, A. A. & Jackson, R. T. Healthy eating index versus alternate healthy index in relation to diabetes status and health markers in U.S. adults: NHANES 2007-2010. Nutr. J. 18, 26 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Broadhurst, D. et al. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14, 48 (2018).

    Google Scholar 

  49. 49.

    Kamleh, M. A., Ebbels, T. M. D., Spagou, K., Masson, P. & Want, E. J. Optimizing the use of quality control samples for signal drift correction in large-scale urine metabolic profiling studies. Anal. Chem. 84, 2670–2677 (2012).

    CAS  PubMed  Google Scholar 

  50. 50.

    Lewis, M. R. et al. Development and application of ultra-performance liquid chromatography-TOF MS for precision large scale urinary metabolic phenotyping. Anal. Chem. 88, 9004–9013 (2016).

    CAS  PubMed  Google Scholar 

  51. 51.

    Wehrens, R. et al. Improved batch correction in untargeted MS-based metabolomics. Metabolomics 12, 88 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    De Souza R. J. et al. Maternal diet and the serum metabolome in pregnancy: robust dietary biomarkers generalizable to a multiethnic birth cohort. Curr. Dev. Nutr. (2020).

  53. 53.

    Chong, J. et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486–W494 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Carayol, M. et al. Reliability of serum metabolites over a two-year period: A targeted metabolomic approach in fasting and non-fasting samples from EPIC. PLoS ONE 10, 1–10 (2015).

    Google Scholar 

  55. 55.

    Braekke, K. et al. Asymmetric dimethylarginine in the maternal and fetal circulation in preeclampsia. Pediatr. Res. 66, 411–415 (2009).

    CAS  PubMed  Google Scholar 

  56. 56.

    Chong, Y. et al. Ethnic differences translate to inadequacy of high-risk screening for gestational diabetes mellitus in an Asian population: a cohort study. BMC Pregnancy Childbirth 14, 345 (2014).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Yu, Z. et al. Differences between human plasma and serum metabolite profiles. PLoS ONE 6, e21230 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Lindsay, K. L. et al. Longitudinal metabolomic profiling of amino acids and lipids across healthy pregnancy. PLoS ONE 10, 1–19 (2015).

    Google Scholar 

  59. 59.

    Stevens, V. L., Hoover, E., Wang, Y. & Zanetti, K. A. Pre-analytical factors that affect metabolite stability in human urine, plasma, and serum: a review. Metabolites 9, 156 (2019).

    CAS  PubMed Central  Google Scholar 

  60. 60.

    Saoi, M. et al. Metabolic perturbations from step reduction in older persons at risk for sarcopenia: plasma biomarkers of abrupt changes in physical activity. Metabolites. 9, 134 (2019).

    CAS  PubMed Central  Google Scholar 

  61. 61.

    Azab, S. M. et al. Serum non-esterified fatty acids have utility as dietary biomarkers of fat intake from fish, fish oil and dairy in women. J. Lipid Res. 63, 933–944 (2020).

    Google Scholar 

  62. 62.

    Sasaki, K. et al. Metabolomics platform with capillary electrophoresis coupled with high-resolution mass spectrometry for plasma analysis. Anal. Chem. 91, 1295–1301 (2019).

    CAS  PubMed  Google Scholar 

  63. 63.

    Höcker, O. et al. Enrichment-free analysis of anionic micropollutants in the sub-ppb range in drinking water by capillary electrophoresis-high resolution mass spectrometry. Anal. Bioanal. Chem. 412, 4857–4865 (2020).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Azab, S. M. et al. Serum metabolic signatures of chronic limb-threatening ischemia in patients with peripheral artery disease. J. Clin. Med. 9, 1877 (2020).

    CAS  PubMed Central  Google Scholar 

Download references


The authors thank the participants in all of the cohorts who generously donated their time, information, and serum samples. The study was funded by the Canadian Institutes of Health Research (CIHR) (Team Grant: DOHaD – Implications for Men, Women, Boys and Girls; 201511). PB-M. also acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC), and Genome Canada. Dr. Anand is supported by a Tier 1 Canada Research Chair in Ethnicity and Cardiovascular Disease and Heart and Stroke Foundation Chair in Population Health. The authors acknowledge the contributions of the cohort investigators who recruited participants from CHILD (A. Becker, P. Mandhane, S. Turvey, T. Moraes, M. Azad, D. Befus), FAMILY (K. Morrison), START (M. Gupta) and ABC (J. Wilson, G. Wahi).

Author information




S.S.A. and P.B.-M. designed the research. M.S. conducted research and processed data with support from Z.K., B.G. and S.A. M.S. and P.B.-M. analyzed the data and performed statistical analyses that was reviewed by R.J.d.S. and S.S.A. M.S. and P.B.-M. wrote the paper with critical feedback from R.J.d.S., S.S.A. and S.A. P.B.-M. had primary responsibility for final content. S.A.A., K.K.T., S.A. and P.S. were principal investigators responsible for oversight of each cohort’s data. All listed authors read, edited, and approved the final manuscript.

Corresponding author

Correspondence to Philip Britz-McKibbin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

de Souza R. J. et al. Curr. Develop. Nutr. 4, nzaa144 (2020):

Yamamoto M. et al. Metabolomics 15, 1–18 (2019):

Wellington N., et al. Nutrients 11, 2407 (2019):

Saoi M., et al. Metabolites 9, 134 (2019):

DiBattista A. et al. J. Proteome Res. 18, 841–854 (2019):

Key data used in this protocol

de Souza R. J. et al. Curr. Develop. Nutr. 4, nzaa144 (2020):

Supplementary information

Supplementary Information

Supplementary Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shanmuganathan, M., Kroezen, Z., Gill, B. et al. The maternal serum metabolome by multisegment injection-capillary electrophoresis-mass spectrometry: a high-throughput platform and standardized data workflow for large-scale epidemiological studies. Nat Protoc 16, 1966–1994 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links