Abstract
Precise quantification of metabolic pathway fluxes in biological systems is of major importance in guiding efforts in metabolic engineering, biotechnology, microbiology, human health, and cell culture. 13C metabolic flux analysis (13C-MFA) is the predominant technique used for determining intracellular fluxes. Here, we present a protocol for 13C-MFA that incorporates recent advances in parallel labeling experiments, isotopic labeling measurements, and statistical analysis, as well as best practices developed through decades of experience. Experimental design to ensure that fluxes are estimated with the highest precision is an integral part of the protocol. The protocol is based on growing microbes in two (or more) parallel cultures with 13C-labeled glucose tracers, followed by gas chromatography–mass spectrometry (GC–MS) measurements of isotopic labeling of protein-bound amino acids, glycogen-bound glucose, and RNA-bound ribose. Fluxes are then estimated using software for 13C-MFA, such as Metran, followed by comprehensive statistical analysis to determine the goodness of fit and calculate confidence intervals of fluxes. The presented protocol can be completed in 4 d and quantifies metabolic fluxes with a standard deviation of ≤2%, a substantial improvement over previous implementations. The presented protocol is exemplified using an Escherichia coli ΔtpiA case study with full supporting data, providing a hands-on opportunity to step through a complex troubleshooting scenario. Although applications to prokaryotic microbial systems are emphasized, this protocol can be easily adjusted for application to eukaryotic organisms.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
An automated workflow for multi-omics screening of microbial model organisms
npj Systems Biology and Applications Open Access 19 May 2023
-
Turn air-captured CO2 with methanol into amino acid and pyruvate in an ATP/NAD(P)H-free chemoenzymatic system
Nature Communications Open Access 15 May 2023
-
Functional comparison of metabolic networks across species
Nature Communications Open Access 27 March 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
All data relevant to this protocol are included in the Supplementary Information files.
Software availability
The Metran software is freely available for academic research and educational purposes. The technical licensing office at the Massachusetts Institute of Technology can be contacted to request a copy of the Metran software (https://tlo.mit.edu/technologies/metran-software-13c-metabolic-flux-analysis).
References
Ishii, N. et al. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316, 593–597 (2007).
Buescher, J. M. et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34, 189–201 (2015).
Badur, M. G. & Metallo, C. M. Reverse engineering the cancer metabolic network using flux analysis to understand drivers of human disease. Metab. Eng. 45, 95–108 (2017).
DeWaal, D. et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat. Commun. 9, 446 (2018).
Boghigian, B. A., Seth, G., Kiss, R. & Pfeifer, B. A. Metabolic flux analysis and pharmaceutical production. Metab. Eng. 12, 81–95 (2010).
Stephanopoulos, G. Metabolic fluxes and metabolic engineering. Metab. Eng. 1, 1–11 (1999).
Antoniewicz, M. R. Methods and advances in metabolic flux analysis: a mini-review. J. Ind. Microbiol. Biotechnol. 42, 317–325 (2015).
Sauer, U. Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2, 62 (2006).
Zamboni, N., Fendt, S. M., Ruhl, M. & Sauer, U. 13C-based metabolic flux analysis. Nat. Protoc. 4, 878–892 (2009).
Antoniewicz, M. R., Kelleher, J. K. & Stephanopoulos, G. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab. Eng. 9, 68–86 (2007).
Wiechert, W., Mollney, M., Petersen, S. & de Graaf, A. A. A universal framework for 13C metabolic flux analysis. Metab. Eng. 3, 265–283 (2001).
Crown, S. B., Long, C. P. & Antoniewicz, M. R. Optimal tracers for parallel labeling experiments and 13C metabolic flux analysis: a new precision and synergy scoring system. Metab. Eng. 38, 10–18 (2016).
Antoniewicz, M. R. 13C metabolic flux analysis: optimal design of isotopic labeling experiments. Curr. Opin. Biotechnol. 24, 1116–1121 (2013).
Metallo, C. M., Walther, J. L. & Stephanopoulos, G. Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J. Biotechnol. 144, 167–174 (2009).
Antoniewicz, M. R. Parallel labeling experiments for pathway elucidation and 13C metabolic flux analysis. Curr. Opin. Biotechnol. 36, 91–97 (2015).
Crown, S. B., Long, C. P. & Antoniewicz, M. R. Integrated 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli. Metab. Eng. 28, 151–158 (2015).
Antoniewicz, M. R., Kelleher, J. K. & Stephanopoulos, G. Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab. Eng. 8, 324–337 (2006).
Long, C. P., Au, J., Gonzalez, J. E. & Antoniewicz, M. R. 13C metabolic flux analysis of microbial and mammalian systems is enhanced with GC-MS measurements of glycogen and RNA labeling. Metab. Eng. 38, 65–72 (2016).
McConnell, B. O. & Antoniewicz, M. R. Measuring the composition and stable-isotope labeling of algal biomass carbohydrates via gas chromatography/mass spectrometry. Anal. Chem. 88, 4624–4628 (2016).
Orth, J. D., Thiele, I. & Palsson, B. O. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).
Heirendt, L. et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702 (2019).
Long, C. P., Au, J., Sandoval, N. R., Gebreselassie, N. A. & Antoniewicz, M. R. Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in Escherichia coli. Nat. Commun. 8, 14316 (2017).
Ahn, W. S., Crown, S. B. & Antoniewicz, M. R. Evidence for transketolase-like TKTL1 flux in CHO cells based on parallel labeling experiments and 13C-metabolic flux analysis. Metab. Eng. 37, 72–78 (2016).
Nakahigashi, K. et al. Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism. Mol. Syst. Biol. 5, 306 (2009).
Antoniewicz, M. R. A guide to 13C metabolic flux analysis for the cancer biologist. Exp. Mol. Med. 50, 19 (2018).
Gonzalez, J. E. & Antoniewicz, M. R. Tracing metabolism from lignocellulosic biomass and gaseous substrates to products with stable-isotopes. Curr. Opin. Biotechnol. 43, 86–95 (2017).
Crown, S. B. & Antoniewicz, M. R. Selection of tracers for 13C-metabolic flux analysis using elementary metabolite units (EMU) basis vector methodology. Metab. Eng. 14, 150–161 (2012).
Hollinshead, W. D., Henson, W. R., Abernathy, M., Moon, T. S. & Tang, Y. J. Rapid metabolic analysis of Rhodococcus opacus PD630 via parallel 13C-metabolite fingerprinting. Biotechnol. Bioeng. 113, 91–100 (2016).
Wolfsberg, E., Long, C. P. & Antoniewicz, M. R. Metabolism in dense microbial colonies: 13C metabolic flux analysis of E. coli grown on agar identifies two distinct cell populations with acetate cross-feeding. Metab. Eng. 49, 242–247 (2018).
Cordova, L. T. & Antoniewicz, M. R. 13C metabolic flux analysis of the extremely thermophilic, fast growing, xylose-utilizing Geobacillus strain LC300. Metab. Eng. 33, 148–157 (2016).
Cordova, L. T. et al. Co-utilization of glucose and xylose by evolved Thermus thermophilus LC113 strain elucidated by C metabolic flux analysis and whole genome sequencing. Metab. Eng. 37, 63–71 (2016).
Young, J. D., Walther, J. L., Antoniewicz, M. R., Yoo, H. & Stephanopoulos, G. An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol. Bioeng. 99, 686–699 (2008).
Antoniewicz, M. R. et al. Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab. Eng. 9, 277–292 (2007).
Yuan, J., Bennett, B. D. & Rabinowitz, J. D. Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat. Protoc. 3, 1328–1340 (2008).
He, L. et al. Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions. Metab. Eng. 39, 247–256 (2017).
Antoniewicz, M. R. Tandem mass spectrometry for measuring stable-isotope labeling. Curr. Opin. Biotechnol. 24, 48–53 (2013).
van Winden, W., Schipper, D., Verheijen, P. & Heijnen, J. Innovations in generation and analysis of 2D [13C,1H] COSY NMR spectra for metabolic flux analysis purposes. Metab. Eng. 3, 322–343 (2001).
McCloskey, D., Young, J. D., Xu, S., Palsson, B. O. & Feist, A. M. MID Max: LC-MS/MS method for measuring the precursor and product mass isotopomer distributions of metabolic intermediates and cofactors for metabolic flux analysis applications. Anal. Chem. 88, 1362–1370 (2016).
Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).
Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 40, D742–D753 (2012).
Cordova, L. T., Cipolla, R. M., Swarup, A., Long, C. P. & Antoniewicz, M. R. 13C metabolic flux analysis of three divergent extremely thermophilic bacteria: Geobacillus sp. LC300, Thermus thermophilus HB8, and Rhodothermus marinus DSM 4252. Metab. Eng. 44, 182–190 (2017).
Long, C. P., Gonzalez, J. E., Cipolla, R. M. & Antoniewicz, M. R. Metabolism of the fast-growing bacterium Vibrio natriegens elucidated by 13C metabolic flux analysis. Metab. Eng. 44, 191–197 (2017).
Au, J., Choi, J., Jones, S. W., Venkataramanan, K. P. & Antoniewicz, M. R. Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for 13C metabolic flux analysis. Metab. Eng. 26, 23–33 (2014).
Long, C. P. & Antoniewicz, M. R. Quantifying biomass composition by gas chromatography/mass spectrometry. Anal. Chem. 86, 9423–9427 (2014).
Leighty, R. W. & Antoniewicz, M. R. Parallel labeling experiments with [U-13C]glucose validate E. coli metabolic network model for 13C metabolic flux analysis. Metab. Eng. 14, 533–541 (2012).
Gonzalez, J. E., Long, C. P. & Antoniewicz, M. R. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis. Metab. Eng. 39, 9–18 (2017).
Gopalakrishnan, S. & Maranas, C. D. 13C metabolic flux analysis at a genome-scale. Metab. Eng. 32, 12–22 (2015).
Martin, H. G. et al. A method to constrain genome-scale models with 13C labeling data. PLoS Comput. Biol. 11, e1004363 (2015).
Yoo, H., Antoniewicz, M. R., Stephanopoulos, G. & Kelleher, J. K. Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J. Biol. Chem. 283, 20621–20627 (2008).
Young, J. D. INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 30, 1333–1335 (2014).
Weitzel, M. et al. 13CFLUX2–high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29, 143–145 (2013).
Shupletsov, M. S. et al. OpenFLUX2: 13C-MFA modeling software package adjusted for the comprehensive analysis of single and parallel labeling experiments. Microb. Cell Fact. 13, 152 (2014).
Kajihata, S., Furusawa, C., Matsuda, F. & Shimizu, H. OpenMebius: an open source software for isotopically nonstationary 13C-based metabolic flux analysis. Biomed. Res. Int. 2014, 627014 (2014).
Swarup, A., Lu, J., DeWoody, K. C. & Antoniewicz, M. R. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8. Metab. Eng. 24, 173–180 (2014).
Long, C. P., Gonzalez, J. E., Feist, A. M., Palsson, B. O. & Antoniewicz, M. R. Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli. Proc. Natl. Acad. Sci. USA 115, 222–227 (2018).
Antoniewicz, M. R., Kelleher, J. K. & Stephanopoulos, G. Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal. Chem. 79, 7554–7559 (2007).
Fong, S. S., Nanchen, A., Palsson, B. O. & Sauer, U. Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. J. Biol. Chem. 281, 8024–8033 (2006).
Long, C. P., Gonzalez, J. E., Feist, A. M., Palsson, B. O. & Antoniewicz, M. R. Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring. Metab. Eng. 44, 100–107 (2017).
Leighty, R. W. & Antoniewicz, M. R. Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state. Metab. Eng. 13, 745–755 (2011).
Antoniewicz, M. R. Dynamic metabolic flux analysis–tools for probing transient states of metabolic networks. Curr. Opin. Biotechnol. 24, 973–978 (2013).
Gebreselassie, N. A. & Antoniewicz, M. R. 13C-metabolic flux analysis of co-cultures: a novel approach. Metab. Eng. 31, 132–139 (2015).
Crown, S. B. et al. Resolving the TCA cycle and pentose-phosphate pathway of Clostridium acetobutylicum ATCC 824: isotopomer analysis, in vitro activities and expression analysis. Biotechnol. J. 6, 300–305 (2011).
Long, C. P., Gonzalez, J. E., Sandoval, N. R. & Antoniewicz, M. R. Characterization of physiological responses to 22 gene knockouts in Escherichia coli central carbon metabolism. Metab. Eng. 37, 102–113 (2016).
Enjalbert, B., Millard, P., Dinclaux, M., Portais, J. C. & Letisse, F. Acetate fluxes in Escherichia coli are determined by the thermodynamic control of the Pta-AckA pathway. Sci. Rep. 7, 42135 (2017).
Taymaz-Nikerel, H., Borujeni, A. E., Verheijen, P. J., Heijnen, J. J. & van Gulik, W. M. Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry. Biotechnol. Bioeng. 107, 369–381 (2010).
Antoniewicz, M. R., Kelleher, J. K. & Stephanopoulos, G. Measuring deuterium enrichment of glucose hydrogen atoms by gas chromatography/mass spectrometry. Anal. Chem. 83, 3211–3216 (2011).
Crown, S. B., Marze, N. & Antoniewicz, M. R. Catabolism of branched chain amino acids contributes significantly to synthesis of odd-chain and even-chain fatty acids in 3T3-L1 adipocytes. PLoS ONE 10, e0145850 (2015).
Acknowledgements
This work was supported by grant NSF MCB-1616332.
Author information
Authors and Affiliations
Contributions
C.P.L. performed all experiments. C.P.L. and M.R.A. analyzed the data and wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Key references using this protocol
Orbán-Németh, Z. et al. Nat. Protoc. 13, 478–494 (2018): https://doi.org/10.1038/nprot.2017.146
Key data used in this protocol
Orbán-Németh, Z. et al. Nat. Protoc. 13, 478–494 (2018): https://doi.org/10.1038/nprot.2017.146
Supplementary information
Supplementary Data 1
Raw GC–MS data files in CDF file format for the E. coli ΔtpiA case study.
Supplementary Data 2
Integrated mass isotopomer distributions for the E. coli ΔtpiA case study.
Supplementary Data 3
Metabolic network model used for 13C-MFA for the E. coli ΔtpiA case study.
Supplementary Data 4
Metran file with default E. coli model.
Supplementary Data 5
Metran file for the E. coli ΔtpiA case study.
Supplementary Data 6
Flux analysis results for the E. coli ΔtpiA case study.
Rights and permissions
About this article
Cite this article
Long, C.P., Antoniewicz, M.R. High-resolution 13C metabolic flux analysis. Nat Protoc 14, 2856–2877 (2019). https://doi.org/10.1038/s41596-019-0204-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41596-019-0204-0
This article is cited by
-
Turn air-captured CO2 with methanol into amino acid and pyruvate in an ATP/NAD(P)H-free chemoenzymatic system
Nature Communications (2023)
-
Functional comparison of metabolic networks across species
Nature Communications (2023)
-
An automated workflow for multi-omics screening of microbial model organisms
npj Systems Biology and Applications (2023)
-
Linear programming based gene expression model (LPM-GEM) predicts the carbon source for Bacillus subtilis
BMC Bioinformatics (2022)
-
Trypanosoma brucei: Metabolomics for analysis of cellular metabolism and drug discovery
Metabolomics (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.