Using enhanced number and brightness to measure protein oligomerization dynamics in live cells

Abstract

Protein dimerization and oligomerization are essential to most cellular functions, yet measurement of the size of these oligomers in live cells, especially when their size changes over time and space, remains a challenge. A commonly used approach for studying protein aggregates in cells is number and brightness (N&B), a fluorescence microscopy method that is capable of measuring the apparent average number of molecules and their oligomerization (brightness) in each pixel from a series of fluorescence microscopy images. We have recently expanded this approach in order to allow resampling of the raw data to resolve the statistical weighting of coexisting species within each pixel. This feature makes enhanced N&B (eN&B) optimal for capturing the temporal aspects of protein oligomerization when a distribution of oligomers shifts toward a larger central size over time. In this protocol, we demonstrate the application of eN&B by quantifying receptor clustering dynamics using electron-multiplying charge-coupled device (EMCCD)-based total internal reflection microscopy (TIRF) imaging. TIRF provides a superior signal-to-noise ratio, but we also provide guidelines for implementing eN&B in confocal microscopes. For each time point, eN&B requires the acquisition of 200 frames, and it takes a few seconds up to 2 min to complete a single time point. We provide an eN&B (and standard N&B) MATLAB software package amenable to any standard confocal or TIRF microscope. The software requires a high-RAM computer (64 Gb) to run and includes a photobleaching detrending algorithm, which allows extension of the live imaging for more than an hour.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Enhanced number and brightness exploits fluorescence fluctuation analysis to extract the oligomerization state of proteins.
Fig. 2: Comparison of eN&B and N&B analysis of data from simulations of oligomers freely diffusing in a liquid solution.
Fig. 3: Analog calibration for eN&B analysis.
Fig. 4: Typical ACF curve obtained from FCS analysis.
Fig. 5: eN&B software interface and data loading.
Fig. 6: eN&B software produces a comprehensive output of oligomerization data.

Data/code availability

The data collection for this study was done using our custom-made algorithms available at http://bioimaging.usc.edu/software.html. The data analysis for this study was done using our custom-made algorithms available at http://bioimaging.usc.edu/software.html. An example dataset is available at the same link.

References

  1. 1.

    Hartman, N. C. & Groves, J. T. Signaling clusters in the cell membrane. Curr. Opin. Cell Biol. 23, 370–376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Ali, M. H. & Imperiali, B. Protein oligomerization: how and why. Bioorg. Med. Chem. 13, 5013–5020 (2005).

    CAS  PubMed  Google Scholar 

  3. 3.

    Marianayagam, N. J., Sunde, M. & Matthews, J. M. The power of two: protein dimerization in biology. Trends Biochem. Sci. 29, 618–625 (2004).

    CAS  PubMed  Google Scholar 

  4. 4.

    Janes, P. W., Nievergall, E. & Lackmann, M. Concepts and consequences of Eph receptor clustering. Semin. Cell Dev. Biol. 23, 43–50 (2012).

    CAS  PubMed  Google Scholar 

  5. 5.

    Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bray, D., Levin, M. D. & Morton-Firth, C. J. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393, 85–88 (1998).

    CAS  PubMed  Google Scholar 

  7. 7.

    Nashmi, R. et al. Assembly of α4β2 nicotinic acetylcholine receptors assessed with functional fluorescently labeled subunits: effects of localization, trafficking, and nicotine-induced upregulation in clonal mammalian cells and in cultured midbrain neurons. J. Neurosci. 23, 11554–11567 (2003).

    CAS  PubMed  Google Scholar 

  8. 8.

    Chiu, C. L. et al. Nanoimaging of focal adhesion dynamics in 3D. PLoS ONE 9, e99896 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Digman, M. A., Wiseman, P. W., Choi, C., Horwitz, A. R. & Gratton, E. Stoichiometry of molecular complexes at adhesions in living cells. Proc. Natl Acad. Sci. USA 106, 2170–2175 (2009).

    CAS  PubMed  Google Scholar 

  10. 10.

    Adu-Gyamfi, E. et al. A loop region in the N-terminal domain of Ebola virus VP40 is important in viral assembly, budding, and egress. Viruses 6, 3837–3854 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Chiu, C. L., Digman, M. A. & Gratton, E. Measuring actin flow in 3D cell protrusions. Biophys. J. 105, 1746–1755 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Vishwasrao, H. D., Trifilieff, P. & Kandel, E. R. In vivo imaging of the actin polymerization state with two-photon fluorescence anisotropy. Biophys. J. 102, 1204–1214 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Lampe, M., Vassilopoulos, S. & Merrifield, C. Clathrin coated pits, plaques and adhesion. J. Struct. Biol. 196, 48–56 (2016).

    CAS  PubMed  Google Scholar 

  14. 14.

    Bhambhani, C., Chang, J. L., Akey, D. L. & Cadigan, K. M. The oligomeric state of CtBP determines its role as a transcriptional co-activator and co-repressor of Wingless targets. EMBO J. 30, 2031–2043 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Khan, M. R. et al. Amyloidogenic oligomerization transforms Drosophila Orb2 from a translation repressor to an activator. Cell 163, 1468–1483 (2015).

    CAS  PubMed  Google Scholar 

  16. 16.

    Marston, N. J., Jenkins, J. R. & Vousden, K. H. Oligomerisation of full length p53 contributes to the interaction with mdm2 but not HPV E6. Oncogene 10, 1709–1715 (1995).

    CAS  PubMed  Google Scholar 

  17. 17.

    Hass, M. R. et al. SpDamID: marking DNA bound by protein complexes identifies Notch-dimer responsive enhancers. Mol. Cell 64, 213 (2016).

    CAS  PubMed  Google Scholar 

  18. 18.

    Schlierf, B., Ludwig, A., Klenovsek, K. & Wegner, M. Cooperative binding of Sox10 to DNA: requirements and consequences. Nucleic Acids Res. 30, 5509–5516 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Stein, E. et al. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12, 667–678 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hinde, E. et al. Quantifying the dynamics of the oligomeric transcription factor STAT3 by pair correlation of molecular brightness. Nat. Commun. 7, 11047 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Conway, A. et al. Multivalent ligands control stem cell behaviour in vitro and in vivo. Nat. Nanotechnol. 8, 831–838 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Salaita, K. et al. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 327, 1380–1385 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Dunsing, V., Mayer, M., Liebsch, F., Multhaup, G. & Chiantia, S. Direct evidence of APLP1 trans interactions in cell-cell adhesion platforms investigated via fluorescence fluctuation spectroscopy. Mol. Biol. Cell 28, 3609-3620 (2017).

  24. 24.

    Plotegher, N., Gratton, E. & Bubacco, L. Number and brightness analysis of alpha-synuclein oligomerization and the associated mitochondrial morphology alterations in live cells. Biochim. Biophys. Acta 1840, 2014–2024 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Luna, E. & Luk, K. C. Bent out of shape: alpha-synuclein misfolding and the convergence of pathogenic pathways in Parkinson’s disease. FEBS Lett. 589, 3749–3759 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Cardenas-Aguayo Mdel, C., Gomez-Virgilio, L., DeRosa, S. & Meraz-Rios, M. A. The role of tau oligomers in the onset of Alzheimer’s disease neuropathology. ACS Chem. Neurosci. 5, 1178–1191 (2014).

    PubMed  Google Scholar 

  27. 27.

    Goedert, M. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349, 1255555 (2015).

    PubMed  Google Scholar 

  28. 28.

    Ojosnegros, S. et al. Eph-ephrin signaling modulated by polymerization and condensation of receptors. Proc. Natl Acad. Sci. USA 114, 13188–13193 (2017).

    CAS  PubMed  Google Scholar 

  29. 29.

    Digman, M. A., Dalal, R., Horwitz, A. F. & Gratton, E. Mapping the number of molecules and brightness in the laser scanning microscope. Biophys. J. 94, 2320–2332 (2008).

    CAS  PubMed  Google Scholar 

  30. 30.

    Qian, H. & Elson, E. L. On the analysis of high order moments of fluorescence fluctuations. Biophys. J. 57, 375–380 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Qian, H. & Elson, E. L. Distribution of molecular aggregation by analysis of fluctuation moments. Proc. Natl Acad. Sci. USA 87, 5479–5483 (1990).

    CAS  PubMed  Google Scholar 

  32. 32.

    Moens, P. D., Gratton, E. & Salvemini, I. L. Fluorescence correlation spectroscopy, raster image correlation spectroscopy, and number and brightness on a commercial confocal laser scanning microscope with analog detectors (Nikon C1). Microsc. Res. Tech. 74, 377–388 (2011).

    PubMed  Google Scholar 

  33. 33.

    Unruh, J. R. & Gratton, E. Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera. Biophys. J. 95, 5385–5398 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Hellriegel, C., Caiolfa, V. R., Corti, V., Sidenius, N. & Zamai, M. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane. FASEB J. 25, 2883–2897 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Trullo, A., Corti, V., Arza, E., Caiolfa, V. R. & Zamai, M. Application limits and data correction in number of molecules and brightness analysis. Microsc. Res. Tech. 76, 1135–1146 (2013).

    CAS  PubMed  Google Scholar 

  36. 36.

    Ossato, G. et al. A two-step path to inclusion formation of huntingtin peptides revealed by number and brightness analysis. Biophys. J. 98, 3078–3085 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Hur, K. H. et al. Quantitative measurement of brightness from living cells in the presence of photodepletion. PLoS ONE 9, e97440 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Nolan, R. et al. Calibration-free in vitro quantification of protein homo-oligomerization using commercial instrumentation and free, open source brightness analysis software. J. Vis. Exp. 2018, e58157 (2018).

  39. 39.

    Nolan, R., Iliopoulou, M., Alvarez, L. & Padilla-Parra, S. Detecting protein aggregation and interaction in live cells: a guide to number and brightness. Methods 140–141, 172–177 (2018).

    PubMed  Google Scholar 

  40. 40.

    Adu-Gyamfi, E., Digman, M. A., Gratton, E. & Stahelin, R. V. Investigation of Ebola VP40 assembly and oligomerization in live cells using number and brightness analysis. Biophys. J. 102, 2517–2525 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Hilsch, M. et al. Influenza A matrix protein M1 multimerizes upon binding to lipid membranes. Biophys. J. 107, 912–923 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Crosby, K. C. et al. Quantitative analysis of self-association and mobility of annexin A4 at the plasma membrane. Biophys. J. 104, 1875–1885 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    James, N. G. et al. Biophys. J. 102, L41–L43 (2012).

  44. 44.

    Perumal, V., Krishnan, K., Gratton, E., Dharmarajan, A. M. & Fox, S. A. Int. J. Biochem. Cell Biol. 64, 91–96 (2015).

  45. 45.

    Youker, R. T. et al. Multiple motifs regulate apical sorting of p75 via a mechanism that involves dimerization and higher-order oligomerization. Mol. Biol. Cell 24, 1996–2007 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Nagy, P., Claus, J., Jovin, T. M. & Arndt-Jovin, D. J. Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis. Proc. Natl Acad. Sci. USA 107, 16524–16529 (2010).

    CAS  PubMed  Google Scholar 

  47. 47.

    James, N. G. et al. A mutation associated with centronuclear myopathy enhances the size and stability of dynamin 2 complexes in cells. Biochim. Biophys. Acta 1840, 315–321 (2014).

    CAS  PubMed  Google Scholar 

  48. 48.

    Labilloy, A. et al. Altered dynamics of a lipid raft associated protein in a kidney model of Fabry disease. Mol. Genet. Metab. 111, 184–192 (2014).

    CAS  PubMed  Google Scholar 

  49. 49.

    Olivera-Couto, A. et al. Eisosomes are dynamic plasma membrane domains showing Pil1-Lsp1 heteroligomer binding equilibrium. Biophys. J. 108, 1633–1644 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ross, J. A. et al. Biophys. J. 100, L15–L17 (2011).

  51. 51.

    Salvemini, I. L. et al. Low PIP2 molar fractions induce nanometer size clustering in giant unilamellar vesicles. Chem. Phys. Lipids 177, 51–63 (2014).

    CAS  PubMed  Google Scholar 

  52. 52.

    Presman, D. M. et al. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells. Proc. Natl Acad. Sci. USA 113, 8236–8241 (2016).

    CAS  PubMed  Google Scholar 

  53. 53.

    Presman, D. M. et al. Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor. PLoS Biol. 12, e1001813 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Abdisalaam, S., Davis, A. J., Chen, D. J. & Alexandrakis, G. Scanning fluorescence correlation spectroscopy techniques to quantify the kinetics of DNA double strand break repair proteins after γ-irradiation and bleomycin treatment. Nucleic Acids Res. 42, e5 (2014).

    CAS  PubMed  Google Scholar 

  55. 55.

    Vetri, V. et al. Fluctuation methods to study protein aggregation in live cells: concanavalin A oligomers formation. Biophys. J. 100, 774–783 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Mieruszynski, S., Briggs, C., Digman, M. A., Gratton, E. & Jones, M. R. Live cell characterization of DNA aggregation delivered through lipofection. Sci. Rep. 5, 10528 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Kania, A. & Klein, R. Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat. Rev. Mol. Cell Biol. 17, 240–256 (2016).

    CAS  PubMed  Google Scholar 

  58. 58.

    Schaupp, A. et al. The composition of EphB2 clusters determines the strength in the cellular repulsion response. J. Cell Biol. 204, 409–422 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Klein, R. Eph/ephrin signalling during development. Development 139, 4105–4109 (2012).

    CAS  PubMed  Google Scholar 

  60. 60.

    Hortiguela, V. et al. Nanopatterns of surface-bound EphrinB1 produce multivalent ligand-receptor interactions that tune EphB2 receptor clustering. Nano Lett. 18, 629–637 (2018).

    CAS  PubMed  Google Scholar 

  61. 61.

    Gambin, Y. et al. Confocal spectroscopy to study dimerization, oligomerization and aggregation of proteins: a practical guide. Int J. Mol. Sci. 17, E655 (2016).

  62. 62.

    Sahoo, B., Drombosky, K. W. & Wetzel, R. Fluorescence correlation spectroscopy: a tool to study protein oligomerization and aggregation in vitro and in vivo. Methods Mol. Biol. 1345, 67–87 (2016).

    CAS  PubMed  Google Scholar 

  63. 63.

    Herrick-Davis, K., Grinde, E., Lindsley, T., Cowan, A. & Mazurkiewicz, J. E. Oligomer size of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor revealed by fluorescence correlation spectroscopy with photon counting histogram analysis: evidence for homodimers without monomers or tetramers. J. Biol. Chem. 287, 23604–23614 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Krieger, J. W. et al. Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat. Protoc. 10, 1948–1974 (2015).

    CAS  PubMed  Google Scholar 

  65. 65.

    Chen, Y., Muller, J. D., So, P. T. & Gratton, E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys. J. 77, 553–567 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Muller, J. D., Chen, Y. & Gratton, E. Resolving heterogeneity on the single molecular level with the photon-counting histogram. Biophys. J. 78, 474–486 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Caiolfa, V. R. et al. Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies. J. Cell Biol. 179, 1067–1082 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Srinivasan, R. et al. Forster resonance energy transfer (FRET) correlates of altered subunit stoichiometry in cys-loop receptors, exemplified by nicotinic α4β2. Int. J. Mol. Sci. 13, 10022–10040 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Tosatto, L. et al. Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson’s disease genetically related mutants. Sci. Rep. 5, 16696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Cremades, N. et al. Direct observation of the interconversion of normal and toxic forms of alpha-synuclein. Cell 149, 1048–1059 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Paredes, J. M. et al. Early amyloidogenic oligomerization studied through fluorescence lifetime correlation spectroscopy. Int. J. Mol. Sci. 13, 9400–9418 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Zanacchi, F. C. et al. A DNA origami platform for quantifying protein copy number in super-resolution. Nat. Methods 14, 789–792 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Hines, K. E. Inferring subunit stoichiometry from single molecule photobleaching. J. Gen. Phys. 141, 737–746 (2013).

    CAS  Google Scholar 

  74. 74.

    Youker, R. T. & Teng, H. Measuring protein dynamics in live cells: protocols and practical considerations for fluorescence fluctuation microscopy. J. Biomed. Opt. 19, 90801 (2014).

    PubMed  Google Scholar 

  75. 75.

    Milo, R. & Phillips, R. Cell Biology by the Numbers (Garland Science, New York, 2015).

  76. 76.

    Elowitz, M. B., Surette, M. G., Wolf, P. E., Stock, J. & Leibler, S. Photoactivation turns green fluorescent protein red. Curr. Biol. 7, 809–812 (1997).

    CAS  PubMed  Google Scholar 

  77. 77.

    Gambin, Y. et al. Lateral mobility of proteins in liquid membranes revisited. Proc. Natl Acad. Sci. USA 103, 2098–2102 (2006).

    CAS  PubMed  Google Scholar 

  78. 78.

    Saffman, P. G. & Delbruck, M. Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA 72, 3111–3113 (1975).

    CAS  PubMed  Google Scholar 

  79. 79.

    Rossing, T. Springer Handbook of Acoustics (Springer, New York, 2007).

  80. 80.

    Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University Press, New York, 2007).

  81. 81.

    Dalal, R. B., Digman, M. A., Horwitz, A. F., Vetri, V. & Gratton, E. Determination of particle number and brightness using a laser scanning confocal microscope operating in the analog mode. Microsc. Res. Tech. 71, 69–81 (2008).

    PubMed  Google Scholar 

  82. 82.

    Wohland, T., Shi, X., Sankaran, J. & Stelzer, E. H. Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt. Exp. 18, 10627–10641 (2010).

    CAS  Google Scholar 

  83. 83.

    Sisan, D. R., Arevalo, R., Graves, C., McAllister, R. & Urbach, J. S. Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope. Biophys. J. 91, 4241–4252 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027–1036 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Ricci, M. A., Manzo, C., Garcia-Parajo, M. F., Lakadamyali, M. & Cosma, M. P. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–1158 (2015).

    CAS  PubMed  Google Scholar 

  86. 86.

    Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    CAS  PubMed  Google Scholar 

  87. 87.

    Kredel, S. et al. mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS ONE 4, e4391 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Elson, E. L. & Magde, D. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13, 1–27 (1974).

    CAS  Google Scholar 

  90. 90.

    Digman, M. A. & Gratton, E. Lessons in fluctuation correlation spectroscopy. Annu. Rev. Phys. Chem. 62, 645–668 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, Berlin, 2006).

  92. 92.

    Zhao, Z. W. et al. Quantifying transcription factor-DNA binding in single cells in vivo with photoactivatable fluorescence correlation spectroscopy. Nat. Protoc. 12, 1458–1471 (2017).

    CAS  PubMed  Google Scholar 

  93. 93.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Rossow, M. J., Sasaki, J. M., Digman, M. A. & Gratton, E. Raster image correlation spectroscopy in live cells. Nat. Protoc. 5, 1761–1774 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Ovesny, M., Krizek, P., Borkovec, J., Svindrych, Z. & Hagen, G. M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Kaur, G. et al. Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy. Nat. Commun. 4, 1637 (2013).

    PubMed  Google Scholar 

Download references

Acknowledgements

S.O. was supported by a Marie Curie International Outgoing Fellowship (276282) within the EU Seventh Framework Programme for Research and Technological Development (2007–2013), a postdoctoral fellowship from the Human Frontier Science Program Organization (LT000109/2011), and a postdoctoral fellowship (EX2009-1136) from the Ministerio de Educación through the Programa Nacional de Movilidad de Recursos Humanos del Plan Nacional de I-D+i 2008-2011. F.C. was supported by grants from the Moore Foundation and the NIH (R01 HD075605 and R01 OD019037). J.O. acknowledges financial support from ICFONEST+, funded by the Marie Curie COFUND (FP7-PEOPLE-2010-COFUND) action of the European Commission and by the MINECO Severo Ochoa action at ICFO. Additional funding for this project came from the Generalitat de Catalunya (2017-SGR-1079 and 2017-SGR-899); the Spanish Ministry of Economy and Competitiveness (MINECO; SAF2015-69706-R, MINAHE5, TEC2014-51940-C2-2-R, TEC2017-83716-C2-1-R; SEV-2015-0522); ISCIII/FEDER (RD16/0011/0024) EU (GLAM Project, GA-634928; Systems Microscopy Network of Excellence Consortium (FP-7-HEALTH.2010.2.1.2.2)); and the ERC (337191-MOTORS and 647863-COMIET); the Fundació Privada Cellex; and the CERCA Programme/Generalitat de Catalunya. The results presented here reflect only the views of the authors; the European Commission is not responsible for any use that may be made of the information contained in this article. We acknowledge assistance with imaging and a fee waiver from the Nikon Center of Excellence at ICFO.

Author information

Affiliations

Authors

Contributions

S.O., J.O. and A.S. performed the experiments. S.O., D.R., C.-L.C. and F.C. analyzed the results and designed the algorithms. V.H., E.L. and E.M. designed the micro-printing protocol. S.M. performed the FCS analysis. M.L., E.M., A.R. and S.E.F. contributed to the experimental design. S.O., F.C., J.O., C.-L.C., D.R. and S.E.F. wrote the manuscript.

Corresponding authors

Correspondence to Scott E. Fraser or Samuel Ojosnegros.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Ojosnegros, S. et al. Proc. Natl Acad. Sci. USA 114, 13188–13193 (2017): http://www.pnas.org/content/114/50/13188

Hortigüela, V. et al. Nano Lett. 18, 629–637 (2018): https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.7b04904

Integrated supplementary information

Supplementary Figure 1 Example of photobleaching detrending in cells that were not stimulated with the ligand shows consistent brightness correction.

A) Comparison of two single-cell experiments: first, normalized detrended brightness (color) in a time-lapse experiment, second, an experiment showing initial and final time point (dashed and dotted lines). B) Averaged relative center of mass for multiple cells (n=3= detrended time points and (n=3) initial-final. For each time-lapse recording, the weighted center of mass of the brightness plot (counts, brightness) is calculated after detrending (blue line). The center of mass value is normalized with respect to the initial time point, providing a percentage change. Similarly, the initial-final time points acquired on a separate sample are represented for reference (red line). The center of mass shift for detrended cells is within 10% of the non-detrended non-time-lapse value. The average bleaching rate for the time-lapse recordings was 14.5 ± 7.4% after 6 sequential time points. Each time-lapse time point consisted in 200 frames each acquired at 500 ms exposure. Reference initial and final used same camera acquisition settings on a different sample plate imaged at 10 and 55 minutes.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1

Reporting Summary

Supplementary Video 1

Screen recording of the analysis of a single cell with eN&B software.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cutrale, F., Rodriguez, D., Hortigüela, V. et al. Using enhanced number and brightness to measure protein oligomerization dynamics in live cells. Nat Protoc 14, 616–638 (2019). https://doi.org/10.1038/s41596-018-0111-9

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing