Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein-intrinsic properties and context-dependent effects regulate pioneer factor binding and function

Abstract

Chromatin is a barrier to the binding of many transcription factors. By contrast, pioneer factors access nucleosomal targets and promote chromatin opening. Despite binding to target motifs in closed chromatin, many pioneer factors display cell-type-specific binding and activity. The mechanisms governing pioneer factor occupancy and the relationship between chromatin occupancy and opening remain unclear. We studied three Drosophila transcription factors with distinct DNA-binding domains and biological functions: Zelda, Grainy head and Twist. We demonstrated that the level of chromatin occupancy is a key determinant of pioneering activity. Multiple factors regulate occupancy, including motif content, local chromatin and protein concentration. Regions outside the DNA-binding domain are required for binding and chromatin opening. Our results show that pioneering activity is not a binary feature intrinsic to a protein but occurs on a spectrum and is regulated by a variety of protein-intrinsic and cell-type-specific features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ectopically expressed PFs open chromatin and activate transcription.
Fig. 2: Twi binds closed chromatin extensively and drives accessibility at a limited number of sites.
Fig. 3: Motif content shapes PF activity.
Fig. 4: Many endogenous binding sites are resistant to ectopic PF binding.
Fig. 5: PF binding and opening of closed chromatin are concentration dependent.
Fig. 6: The DBD is not sufficient for PF function.

Similar content being viewed by others

Data availability

Sequencing data are available through the Gene Expression Omnibus under accession GSE227884. Source data are provided with this paper.

Code availability

All analysis code is described in the Methods and freely available on GitHub at https://github.com/tjgibson/S2_pioneers_manuscript.

References

  1. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8Å resolution. Nature 389, 251–260 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Li, X.-Y. et al. The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding. Genome Biol. 12, R34 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iwafuchi-Doi, M. & Zaret, K. S. Cell fate control by pioneer transcription factors. Development 143, 1833–1837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zaret, K. S. Pioneer transcription factors initiating gene network changes. Annu. Rev. Genet. 54, 367–385 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Larson, E. D., Marsh, A. J. & Harrison, M. M. Pioneering the developmental frontier. Mol. Cell 81, 1640–1650 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151, 994–1004 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Donaghey, J. et al. Genetic determinants and epigenetic effects of pioneer-factor occupancy. Nat. Genet. 50, 250–258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chronis, C. et al. Cooperative binding of transcription factors orchestrates reprogramming. Cell 168, 442–459 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buecker, C. et al. Reorganization of enhancer patterns in transition from naive to primed pluripotency. Cell Stem Cell 14, 838–853 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cernilogar, F. M. et al. Pre-marked chromatin and transcription factor co-binding shape the pioneering activity of Foxa2. Nucleic Acids Res. 47, 9069–9086 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lupien, M. et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132, 958–970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mayran, A. et al. Pioneer factor Pax7 deploys a stable enhancer repertoire for specification of cell fate. Nat. Genet. 50, 259–269 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Schulz, K. N. et al. Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo. Genome Res. 25, 1715–1726 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gaskill, M. M., Gibson, T. J., Larson, E. D. & Harrison, M. M. GAF is essential for zygotic genome activation and chromatin accessibility in the early Drosophila embryo. eLife 10, e66668 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maresca, M. et al. Pioneer activity distinguishes activating from non-activating SOX2 binding sites. EMBO J. https://doi.org/10.15252/embj.2022113150 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Judd, J., Duarte, F. M. & Lis, J. T. Pioneer-like factor GAF cooperates with PBAP (SWI/SNF) and NURF (ISWI) to regulate transcription. Genes Dev. 35, 147–156 (2020).

    Article  PubMed  Google Scholar 

  17. King, H. W. & Klose, R. J. The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. eLife 6, e22631 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Michael, A. K. et al. Mechanisms of OCT4-SOX2 motif readout on nucleosomes. Science 368, 1460–1465 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Liang, H.-L. et al. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature 456, 400–403 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Staudt, N., Fellert, S., Chung, H.-R., Jäckle, H. & Vorbrüggen, G. Mutations of the Drosophila zinc finger-encoding gene vielfältig impair mitotic cell divisions and cause improper chromosome segregation. Mol. Biol. Cell 17, 2356–2365 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schulz, K. N. & Harrison, M. M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 20, 221–234 (2018).

    Article  Google Scholar 

  22. Vastenhouw, N. L., Cao, W. X. & Lipshitz, H. D. The maternal-to-zygotic transition revisited. Development 146, dev161471 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Sun, Y. et al. Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation. Genome Res. 25, 1703–1714 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McDaniel, S. L. et al. Continued activity of the pioneer factor Zelda is required to drive zygotic genome activation. Mol. Cell 74, 185–195 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, M. T. et al. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503, 360–364 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leichsenring, M., Maes, J., Mössner, R., Driever, W. & Onichtchouk, D. Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science 341, 1005–1009 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Gassler, J. et al. Zygotic genome activation by the totipotency pioneer factor Nr5a2. Science 378, 1305–1315 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Gentsch, G. E., Owens, N. D. L. & Smith, J. C. The spatiotemporal control of zygotic genome activation. iScience 16, 485–498 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Charney, R. M. et al. Foxh1 occupies cis-regulatory modules prior to dynamic transcription factor interactions controlling the mesendoderm gene program. Dev. Cell 40, 595–607 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Larson, E. D. et al. Cell-type-specific chromatin occupancy by the pioneer factor Zelda drives key developmental transitions in Drosophila. Nat. Commun. 12, 7153 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nevil, M., Bondra, E. R., Schulz, K. N., Kaplan, T. & Harrison, M. M. Stable binding of the conserved transcription factor Grainy head to its target genes throughout Drosophila melanogaster development. Genetics 205, 605–620 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, S. & Samakovlis, C. Grainy head and its target genes in epithelial morphogenesis and wound healing. Curr. Top. Dev. Biol. 98, 35–63 (2012).

  33. Jacobs, J. et al. The transcription factor Grainy head primes epithelial enhancers for spatiotemporal activation by displacing nucleosomes. Nat. Genet. 50, 1011–1020 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, A. F. et al. GRHL2-dependent enhancer switching maintains a pluripotent stem cell transcriptional subnetwork after exit from naive pluripotency. Cell Stem Cell 23, 226–238 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nevil, M., Gibson, T. J., Bartolutti, C., Iyengar, A. & Harrison, M. M. Establishment of chromatin accessibility by the conserved transcription factor Grainy head is developmentally regulated. Development https://doi.org/10.1242/dev.185009 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nien, C.-Y. et al. Temporal coordination of gene networks by Zelda in the early Drosophila embryo. PLoS Genet. 7, e1002339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Simpson, P. Maternal–zygotic gene interactions during formation of the dorsoventral pattern in Drosophila embryos. Genetics 105, 615–632 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilczyński, B. & Furlong, E. E. M. Dynamic CRM occupancy reflects a temporal map of developmental progression. Mol. Syst. Biol. 6, 383 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yáñez-Cuna, J. O., Dinh, H. Q., Kvon, E. Z., Shlyueva, D. & Stark, A. Uncovering cis-regulatory sequence requirements for context-specific transcription factor binding. Genome Res. 22, 2018–2030 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brennan, K. J. et al. Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation. Dev. Cell 58, 1898–1916 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Henriques, T. et al. Widespread transcriptional pausing and elongation control at enhancers. Genes Dev. 32, 26–41 (2018).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  44. Philip, P. et al. CBP binding outside of promoters and enhancers in Drosophila melanogaster. Epigenetics Chromatin 8, 48 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tettey, T. T. et al. A role for FACT in RNA polymerase II promoter-proximal pausing. Cell Rep. 27, 3770–3779 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Straub, T., Zabel, A., Gilfillan, G. D., Feller, C. & Becker, P. B. Different chromatin interfaces of the Drosophila dosage compensation complex revealed by high-shear ChIP–seq. Genome Res. 23, 473–485 (2012).

    Article  PubMed  Google Scholar 

  47. Zouaz, A. et al. The Hox proteins Ubx and AbdA collaborate with the transcription pausing factor M1 BP to regulate gene transcription. EMBO J. 36, 2887–2906 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Climent-Cantó, P. et al. The embryonic linker histone dBigH1 alters the functional state of active chromatin. Nucleic Acids Res. 48, 4147–4160 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu, T.-W. et al. Genome-wide chemical mapping of O-GlcNAcylated proteins in Drosophila melanogaster. Nat. Chem. Biol. 13, 161–167 (2016).

    Article  PubMed  Google Scholar 

  50. Enderle, D. et al. Polycomb preferentially targets stalled promoters of coding and noncoding transcripts. Genome Res. 21, 216–226 (2010).

    Article  PubMed  Google Scholar 

  51. Jain, S. U. et al. H3 K27M and EZHIP impede H3K27-methylation spreading by inhibiting allosterically stimulated PRC2. Mol. Cell 80, 726–735 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eastwood, E. L. et al. Dimerisation of the PICTS complex via LC8/Cut-up drives co-transcriptional transposon silencing in Drosophila. eLife 10, e65557 (2021).

  53. Alekseyenko, A. A. et al. Heterochromatin-associated interactions of Drosophila HP1a with dADD1, HIPP1, and repetitive RNAs. Genes Dev. 28, 1445–1460 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liang, J. et al. Chromatin immunoprecipitation indirect peaks highlight long-range interactions of insulator proteins and Pol II pausing. Mol. Cell 53, 672–681 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ong, C.-T., Van Bortle, K., Ramos, E. & Corces, V. G. Poly(ADP-ribosyl)ation regulates insulator function and intrachromosomal interactions in Drosophila. Cell 155, 148–159 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Miao, L. et al. The landscape of pioneer factor activity reveals the mechanisms of chromatin reprogramming and genome activation. Mol. Cell 82, 986–1002 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Veil, M., Yampolsky, L. Y., Grüning, B. & Onichtchouk, D. Pou5f3, SoxB1, and Nanog remodel chromatin on high nucleosome affinity regions at zygotic genome activation. Genome Res. 29, 383–395 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ballaré, C. et al. Nucleosome-driven transcription factor binding and gene regulation. Mol. Cell 49, 67–79 (2013).

    Article  PubMed  Google Scholar 

  59. Zhu, F. et al. The interaction landscape between transcription factors and the nucleosome. Nature 562, 76–81 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chereji, R. V., Bryson, T. D. & Henikoff, S. Quantitative MNase-seq accurately maps nucleosome occupancy levels. Genome Biol. 20, 198 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Stergachis, A. B., Debo, B. M., Haugen, E., Churchman, L. S. & Stamatoyannopoulos, J. A. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 368, 1449–1454 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Abdulhay, N. J. et al. Massively multiplex single-molecule oligonucleosome footprinting. eLife 9, e59404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harrison, M. M., Li, X.-Y., Kaplan, T., Botchan, M. R. & Eisen, M. B. Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to–zygotic transition. PLoS Genet. 7, e1002266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ozdemir, A. et al. High resolution mapping of Twist to DNA in Drosophila embryos: efficient functional analysis and evolutionary conservation. Genome Res. 21, 566–577 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hansen, J. L., Loell, K. J. & Cohen, B. A. A test of the pioneer factor hypothesis using ectopic liver gene activation. eLife 11, e73358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Blassberg, R. et al. Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation. Nat. Cell Biol. 24, 633–644 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mayran, A. et al. Pioneer and nonpioneer factor cooperation drives lineage specific chromatin opening. Nat. Commun. 10, 3807 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  68. Liu, Z. & Kraus, W. L. Catalytic-independent functions of PARP-1 determine Sox2 pioneer activity at intractable genomic loci. Mol. Cell 65, 589–603 (2017).

  69. Kim, S. et al. DNA-guided transcription factor cooperativity shapes face and limb mesenchyme. Cell 187, 692–711 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Lerner, J., Katznelson, A., Zhang, J. & Zaret, K. S. Different chromatin-scanning modes lead to targeting of compacted chromatin by pioneer factors FOXA1 and SOX2. Cell Rep. 42, 112748 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tang, X. et al. Kinetic principles underlying pioneer function of GAGA transcription factor in live cells. Nat. Struct. Mol. Biol. 29, 665–676 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ferrie, J. J., Karr, J. P., Tjian, R. & Darzacq, X. ‘Structure’–function relationships in eukaryotic transcription factors: the role of intrinsically disordered regions in gene regulation. Mol. Cell 82, 3970–3984 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Brodsky, S. et al. Intrinsically disordered regions direct transcription factor in vivo binding specificity. Mol. Cell 79, 459–471 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Hamm, D. C., Bondra, E. R. & Harrison, M. M. Transcriptional activation is a conserved feature of the early embryonic factor Zelda that requires a cluster of four zinc fingers for DNA binding and a low-complexity activation domain. J. Biol. Chem. 290, 3508–3518 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Brodsky, S., Jana, T. & Barkai, N. Order through disorder: the role of intrinsically disordered regions in transcription factor binding specificity. Curr. Opin. Struct. Biol. 71, 110–115 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Staller, M. V. Transcription factors perform a 2-step search of the nucleus. Genetics 222, iyac111 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mir, M. et al. Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos. eLife 7, e40497 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yamada, S. et al. The Drosophila pioneer factor Zelda modulates the nuclear microenvironment of a dorsal target enhancer to potentiate transcriptional output. Curr. Biol. 29, 1387–1393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dodonova, S. O., Zhu, F., Dienemann, C., Taipale, J. & Cramer, P. Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function. Nature 580, 669–672 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Campbell, A. E., Belleville, A. E., Resnick, R., Shadle, S. C. & Tapscott, S. J. Facioscapulohumeral dystrophy: activating an early embryonic transcriptional program in human skeletal muscle. Hum. Mol. Genet. 27, R153–R162 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Reese, R. M., Harrison, M. M. & Alarid, E. T. Grainyhead-like protein 2: the emerging role in hormone-dependent cancers and epigenetics. Endocrinology 160, 1275–1288 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Cherbas, L. et al. The transcriptional diversity of 25 Drosophila cell lines. Genome Res. 21, 301–314 (2010).

    Article  PubMed  Google Scholar 

  83. Harrison, M. M., Botchan, M. R. & Cline, T. W. Grainyhead and Zelda compete for binding to the promoters of the earliest-expressed Drosophila genes. Dev. Biol. 345, 248–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. He, Q., Johnston, J. & Zeitlinger, J. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nat. Biotechnol. 33, 395–401 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Angshuman, S. & Cordula, S. An approach for immunofluorescence of Drosophila S2 cells: Fig. 1. Cold Spring Harb. Protoc. 2007, pdb.prot4760 (2007).

    Article  Google Scholar 

  86. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gaspar, J. M. NGmerge: merging paired-end reads via novel empirically-derived models of sequencing errors. BMC Bioinformatics 19, 536 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nucleic Acids Res. 43, W39–W49 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nystrom, S. L. & McKay, D. J. Memes: a motif analysis environment in R using tools from the MEME Suite. PLoS Comput. Biol. 17, e1008991 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tremblay, B. J.-M. Universalmotif: import, modify, and export motifs with R. bioconductor.org/packages/release/bioc/html/universalmotif.html (2022).

  92. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McLeay, R. C. & Bailey, T. L. Motif enrichment analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics 11, 165 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhu, L. J. et al. FlyFactorSurvey: a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system. Nucleic Acids Res. 39, D111–D117 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Theis, M. Freund and A. Mehle for helpful discussions and advice. We thank J. Zeitlinger (Stowers Institute for Medical Research) for generously sharing the anti-Twist antibody. We acknowledge the University of Wisconsin–Madison Biotechnology Center and the NUSeq Core Facility for sequencing. T.J.G. was supported by National Institutes of Health (NIH) National Research Service Award T32 GM007215. Experiments were supported by grants R35 GM136298 and R01 NS111647 from NIH to M.M.H. M.M.H. was also supported by a Vallee Scholar Award. M.M.H. is a Romnes Faculty Fellow and Vilas Faculty Mid-Career Investigator.

Author information

Authors and Affiliations

Authors

Contributions

T.J.G. and E.D.L. performed experiments and analysis. E.D.L. generated the CUT&RUN data in larval neuroblasts. All other data and analysis were performed by T.J.G. T.J.G. and M.M.H. designed the experiments. M.M.H. and T.J.G. wrote the paper with input from E.D.L.

Corresponding author

Correspondence to Melissa M. Harrison.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Antonio Giraldez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Dimitris Typas, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Stable cell lines allow inducible expression of transcription factors at physiological concentrations.

a, Schematic of generation of stable cell lines and induction of protein expression. b, mRNA levels of zld and grh in S2 cells (n = 2 biologically independent samples). Top histogram shows the distribution of mRNA levels for all Drosophila genes. Vertical dashed line indicates a log2 RPKM value of 0 as a threshold for considering a gene to be expressed. c-d, Immunoblots showing titration of Zld (c) or Grh (d) protein levels in stable cell lines. Two independently generated cell lines are shown and compared to 2-3 hours (H) embryos. 60,000 cells were loaded in each well, which is equivalent to the approximately 60,000 nuclei present in 10 2-3 hours embryos. Black arrowheads indicate Zld (c) or Grh (d). Gray arrowheads indicate background bands used to assess loading. e-g, Heatmaps comparing Zld (e), Grh (f), or Twi (g) ChIP-seq signal to control experiments in which anti-Zld, anti-Grh, anti-Twi, or IgG antibodies were used to perform immunopreciptation in wild-type (WT) cells. ATAC-seq signal in wild-type cells is shown for reference. Heatmaps are ranked by mean intensity across all samples. For all boxplots, line shows the median, boxes extend from the 25th to the 75th percentile, and whiskers show 1.5 × the interquartile range. Outlier points beyond the range of the whiskers are shown individually.

Source data

Extended Data Fig. 2 Ectopic expression of pioneer factors in S2 cells leads to widespread changes to chromatin accessibility and gene expression.

a,d, Volcano plots showing changes in ATAC-seq signal in cells expressing Zld (a) or Grh (d) when compared to wild-type cells treated with the same concentration of CuSO4. b,e, RNA-seq volcano plots showing gene expression changes in cells expressing Zld (b). For ATAC-seq, (n = 2,777 decreased, 37,473 nonsignificant, 3,769 increased) or Grh (e) (n = 8,948 decreased, 43,143 nonsignificant, 4,784 increased) when compared to wild-type cells treated with the same concentration of CuSO4. c,f, Violin plots showing the correlation between changes in chromatin accessibility and gene expression upon expression of Zld (c) or Grh (f). On the x-axis, all ATAC-seq peaks are grouped based on increased, decreased, or non-significant (ns) changes to chromatin accessibility in Zld- or Grh-expressing cells compared to wild-type cells. Groups were compared using a two-sided Wilcoxon rank sum test and Bonferroni-corrected p-values are shown. g,h, Bar plots showing enrichment of gene ontology terms in genes significantly upregulated upon expression of Zld (g) or Grh (h). For all boxplots, line shows the median, boxes extend from the 25th to the 75th percentile, and whiskers show 1.5 × the interquartile range. Outlier points beyond the range of the whiskers are shown individually. Statistical significance for all volcano plots was determined using DESeq2 (see methods).

Extended Data Fig. 3 Zld and Grh bind to chromatin rapidly after induction of protein expression.

a-b, Immunoblots showing time course of Zld (a) or Grh (b) protein expression following induction of stable cell lines. Black arrowheads indicate Zld (a) or Grh (b). Gray arrowheads indicate background bands used to assess loading. c-d, Metaplots showing average z-score normalized CUT&RUN signal at class I, II or III sites at different time points following induction of Zld (c) or Grh (d).

Source data

Extended Data Fig. 4 Twist binding leads to chromatin opening and transcriptional activation.

a, Immunoblot showing titration of Twi or HA-Twi protein levels in stable cell lines. Protein levels in stable cell lines are compared to 3-4 hour (H) old embryos. Black arrowhead indicates Twi or HA-Twi. Gray arrowhead indicates background band used to assess loading. b, Volcano plots showing changes in ATAC-seq signal in cells expressing Twi when compared to wild-type cells treated with the same concentration of CuSO4. c, RNA-seq volcano plots showing gene expression changes in cells expressing Twi when compared to wild-type cells treated with the same concentration of CuSO4. d, Bar plots showing enrichment of gene ontology terms in genes significantly upregulated upon expression of Twi. Statistical significance for all volcano plots was determined using DESeq2 (see methods).

Source data

Extended Data Fig. 5 Chromatin features associated with Zld, Grh and Twi binding sites.

a,c,e, Heatmaps showing the levels of different chromatin marks in class I, II or III regions for Zld (a), Grh (c) or Twi (e). HC, heterochromatin. TFs, transcription factors.The color represents the average z-score normalized read depth across a 1 KB region surrounding the center of class I, II or III ChIP-seq peaks. b,d,f, Example genome browser tracks for class III regions with high levels of H3K27me3 for Zld (b), Grh (d), or Twi (f).

Extended Data Fig. 6 Zld, Grh and Twi do not bind preferentially to motifs in a particular position on nucleosomes.

a-c, Metaplots showing average MNase signal from wild-type cells centered on motifs within class I, II, or III regions for Zld (a), Grh (b), or Twi (c). d-f, Heatmaps showing MNase signal centered on motifs within class II and III regions for Zld (d), Grh (e), or Twi (f). Rows are ordered based on hierarchical clustering to highlight the various patterns of MNase signal around motifs. Signal intensity corresponds to spike-in normalized read counts provided in the original study60.

Extended Data Fig. 7 Zld, Grh and Twi display cell-type specific binding.

a-c, Venn diagrams showing overlap between ChIP-seq peaks identified in different tissues for Zld (a), Grh (b) or Twi (c). d-l, Genome browser tracks showing examples of class IV, V, and VI regions for Zld (d-f), Grh (g-i) or Twi (j-l). For each example, the top tracks show H3K27me3 and H3K9me3 signal over a larger region. Dashed gray lines indicate a zoomed-in region where Zld, Grh or Twi ChIP-seq signal is shown in S2 cells or in embryos.

Extended Data Fig. 8 Analysis of chromatin and motif content at class I-VI regions.

a, Immunoblot showing H3K27me3 levels in two replicates of DMSO- or tazemetostat-treated cells. Tubulin levels are shown as a loading control. b, Heatmap showing specificity of anti-H327me3 antibody in CUT&RUN reactions. A panel of barcoded spike-in nucleosomes bearing different modifications was added to each CUT&RUN reaction (see methods). For each sample, the heatmap displays the percentage of barcode reads for each sample and histone modification relative to the total number of barcode reads for all modifications. c-e, Heatmaps showing the levels of different chromatin marks in class I-VI regions for Zld (c), Grh (d) or Twi (e). HC, heterochromatin. TFs, transcription factors. f-h, Enrichment of known motifs in class I-VI sites for Zld (f), Grh (g) or Twi (h). Left heatmap shows normalized motif rank within each class, with 1 being more enriched and 0 being less enriched. Right heatmap shows the normalized expression (log2 RPKM) in RNA-seq datasets from each of the tissues that was analyzed.

Source data

Extended Data Fig. 9 Expression of Zld, Grh, or Twi at high protein levels results in chromatin opening at a small number of novel binding sites.

a-c, Immunoblots showing Zld (a), Grh (b) or Twi (c) protein levels when stable cell lines are induced using different concentrations of CuSO4. d-f, Bar plots showing the percentage of previously defined class I-VI binding sites that are bound by Zld (d), Grh (e), or Twi (f) when expressed at varying concentrations. g-i, Bar plots showing the percentage of previously defined class I-VI binding sites that overlap an ATAC-seq peak when Zld (g), Grh (h), or Twi (i) are expressed at varying concentrations. j, Heatmap showing z-score normalized, anti-Zld CUT&RUN data generated from either wild-type neural stem cells (Type II neuroblasts) or neural stem cells over-expressing Zld. Heatmaps are divided to show those peaks detected in wild-type vs. novel peaks that were only observed with over-expression of Zld. ATAC-seq data from wild-type neural stem cells is also shown. Heatmaps are ranked by ATAC-seq signal. k, Heatmap of adjusted p-values for the top de novo motifs enriched in either the endogenous or novel (Zld overexpression) Zld binding sites. Motif enrichment p-values were computed using AME (see methods).

Source data

Extended Data Fig. 10 Expression of Zld and Grh DNA-binding domains at protein levels comparable to the full-length proteins.

a-b, Immunoblots showing titration of protein levels for Zld (a) or Grh (b) DNA-binding domains to match expression of the full-length proteins. DNA-binding domain protein levels are shown at a range of CuSO4 concentrations and compared to an equivalent number of cells expressing full-length Zld or Grh at approximately physiological levels. The concentration of CuSO4 used to induce DBD expression for ChIP, ATAC and immunofluorescence experiments is indicated in red. c-d, Immunofluorescent microscopy images of stable cell lines expressing full-length protein or DBD only for Zld (c) or (Grh). Stable cell lines are compared to wild-type (WT) cells. All scale bars are 5 µm.

Source data

Supplementary information

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Table 1. Classification of Zld, Grh and Twi ChIP–seq peaks. The table contains information about ChIP–seq peaks for Zld, Grh and Twi, including the peak location, information about peak calling by MACS2, classification of peaks as class I, II or III, information about differential accessibility as determined by DESeq2, assignment of peaks to the nearest gene, information about differential expression of nearby genes and motif content with each peak. Statistical significance was determined using MACS2 for peaks and DESeq2 for differential gene expression or accessibility. See the Methods for details. Supplementary Table 2. Previously published genomics datasets that were analyzed in this work. This table provides the target of immunoprecipitation (for ChIP–seq datasets), the cell type and/or developmental stage, the Gene Expression Omnibus accession number (GSE) and the PubMed ID for the study in which the dataset was originally published.

Source data

Source Data Extended Data Fig. 1

Unprocessed western blots.

Source Data Extended Data Fig. 3

Unprocessed western blots.

Source Data Extended Data Fig. 4

Unprocessed western blots.

Source Data Extended Data Fig. 8

Unprocessed western blots.

Source Data Extended Data Fig. 9

Unprocessed western blots.

Source Data Extended Data Fig. 10

Unprocessed western blots and images.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibson, T.J., Larson, E.D. & Harrison, M.M. Protein-intrinsic properties and context-dependent effects regulate pioneer factor binding and function. Nat Struct Mol Biol 31, 548–558 (2024). https://doi.org/10.1038/s41594-024-01231-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-024-01231-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing