Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The substrate and inhibitor binding mechanism of polyspecific transporter OAT1 revealed by high-resolution cryo-EM

Abstract

Organic anion transporters (OATs) of the SLC22 family have crucial roles in the transport of organic anions, including metabolites and therapeutic drugs, and in transporter-mediated drug-drug interactions. In the kidneys, OATs facilitate the elimination of metabolic waste products and xenobiotics. However, their transport activities can lead to the accumulation of certain toxic compounds within cells, causing kidney damage. Moreover, OATs are important drug targets, because their inhibition modulates the elimination or retention of substrates linked to diseases. Despite extensive research on OATs, the molecular basis of their substrate and inhibitor binding remains poorly understood. Here we report the cryo-EM structures of rat OAT1 (also known as SLC22A6) and its complexes with para-aminohippuric acid and probenecid at 2.1, 2.8 and 2.9 Å resolution, respectively. Our findings reveal a highly conserved substrate binding mechanism for SLC22 transporters, wherein four aromatic residues form a cage to accommodate the polyspecific binding of diverse compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structure of apo-rOAT1.
Fig. 2: Water molecules at the interface between the NTD and CTD of rOAT1.
Fig. 3: The structures of the rOAT1–PAH complex, the rOAT1–probenecid complex and the substrate-binding site.
Fig. 4: The substrate pocket in rOAT1 and the aromatic cage.
Fig. 5: Homology model of rOAT1 in the outward-facing conformation and cartoon of the aromatic cage in the SLC22 transporters.
Fig. 6: Mapping of natural hOAT1 variants in the structure of rOAT1.

Similar content being viewed by others

Data availability

The cryo-EM density maps of apo-rOAT1, the rOAT1–PAH complex and the rOAT1–probenecid complex have been deposited in the Electron Microscopy Data Bank (EMDB) under accession codes EMD-40352 (refined by CryoSPARC), EMD-40354 and EMD-40355, respectively. The map of apo-rOAT1 refined by RELION4 is available with accession code EMD-40948. The atomic coordinates of the structures of apo-rOAT1, the rOAT1–PAH complex and the rOAT1–probenecid complex have been deposited in the Protein Data Bank (PDB) under accession codes 8SDU, 8SDY and 8SDZ, respectively. The modified version of RELION4 used in this work is available at GitHub https://github.com/jiangjiansen/relion_composite_masks. Source data are provided with this paper.

References

  1. Lopez-Nieto, C. E. et al. Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J. Biol. Chem. 272, 6471–6478 (1997).

    CAS  PubMed  Google Scholar 

  2. Simonson, G. D., Vincent, A. C., Roberg, K. J., Huang, Y. & Iwanij, V. Molecular cloning and characterization of a novel liver-specific transport protein. J. Cell Sci. 107, 1065–1072 (1994).

    CAS  PubMed  Google Scholar 

  3. Mori, K. et al. Kidney-specific expression of a novel mouse organic cation transporter-like protein. FEBS Lett. 417, 371–374 (1997).

    CAS  PubMed  Google Scholar 

  4. Brady, K. P. et al. A novel putative transporter maps to the osteosclerosis (oc) mutation and is not expressed in the oc mutant mouse. Genomics 56, 254–261 (1999).

    CAS  PubMed  Google Scholar 

  5. Nishimura, M. & Naito, S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab. Pharmacokinet. 20, 452–477 (2005).

    CAS  PubMed  Google Scholar 

  6. Hilgendorf, C. et al. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab. Dispos. 35, 1333–1340 (2007).

    CAS  PubMed  Google Scholar 

  7. Rizwan, A. N. & Burckhardt, G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm. Res. 24, 450–470 (2007).

    CAS  PubMed  Google Scholar 

  8. Nigam, S. K. et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol. Rev. 95, 83–123 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Nigam, S. K. The SLC22 transporter family: a paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease. Annu. Rev. Pharmacol. Toxicol. 58, 663–687 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hagos, Y. & Wolff, N. A. Assessment of the role of renal organic anion transporters in drug-induced nephrotoxicity. Toxins (Basel) 2, 2055–2082 (2010).

    CAS  PubMed  Google Scholar 

  11. Sakiyama, M. et al. A common variant of organic anion transporter 4 (OAT4/SLC22A11) gene is associated with renal underexcretion type gout. Drug Metab. Pharmacokinet. 29, 208–210 (2014).

    CAS  PubMed  Google Scholar 

  12. Yee, S. W. & Giacomini, K. M. Emerging roles of the human solute carrier 22 family. Drug Metab. Dispos. 50, 1193–1210 (2021).

    PubMed  Google Scholar 

  13. Chow, P. N. An improved toluene-triton-based liquid scintillation system for counting 14C-labeled compounds at ambient temperature. Anal. Biochem. 60, 322–328 (1974).

    CAS  PubMed  Google Scholar 

  14. Masuda, S., Saito, H. & Inui, K. I. Interactions of nonsteroidal anti-inflammatory drugs with rat renal organic anion transporter, OAT-K1. J. Pharmacol. Exp. Ther. 283, 1039–1042 (1997).

    CAS  PubMed  Google Scholar 

  15. Cha, S. H. et al. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J. Biol. Chem. 275, 4507–4512 (2000).

    CAS  PubMed  Google Scholar 

  16. Kimura, H. et al. Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J. Pharmacol. Exp. Ther. 301, 293–298 (2002).

    CAS  PubMed  Google Scholar 

  17. Takeda, M. et al. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J. Pharmacol. Exp. Ther. 302, 666–671 (2002).

    CAS  PubMed  Google Scholar 

  18. Giacomini, K. M., Galetin, A. & Huang, S. M. The International Transporter Consortium: summarizing advances in the role of transporters in drug development. Clin. Pharmacol. Ther. 104, 766–771 (2018).

    PubMed  Google Scholar 

  19. Hillgren, K. M. et al. Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin. Pharmacol. Ther. 94, 52–63 (2013).

    CAS  PubMed  Google Scholar 

  20. FDA. In Vitro Drug Interaction Studies — Cytochrome P450 Enzyme and Transporter-Mediated Drug Interactions Guidance for Industry (2020).

  21. FDA. Clinical Drug Interaction Studies — Cytochrome P450 Enzyme and Transporter-mediated Drug Interactions Guidance for Industry (2020).

  22. EMA. Guideline on the Investigation of Drug Interactions (2012).

  23. Hosoyamada, M., Sekine, T., Kanai, Y. & Endou, H. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am. J. Physiol. 276, F122–F128 (1999).

    CAS  PubMed  Google Scholar 

  24. Jariyawat, S. et al. The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J. Pharmacol. Exp. Ther. 290, 672–677 (1999).

    CAS  PubMed  Google Scholar 

  25. Maeda, K. et al. Inhibitory effects of p-aminohippurate and probenecid on the renal clearance of adefovir and benzylpenicillin as probe drugs for organic anion transporter (OAT) 1 and OAT3 in humans. Eur. J. Pharm. Sci. 59, 94–103 (2014).

    CAS  PubMed  Google Scholar 

  26. Burckhardt, B. C. et al. Transport of cimetidine by flounder and human renal organic anion transporter 1. Am. J. Physiol. Renal Physiol. 284, F503–F509 (2003).

    CAS  PubMed  Google Scholar 

  27. Yamada, A. et al. Multiple human isoforms of drug transporters contribute to the hepatic and renal transport of olmesartan, a selective antagonist of the angiotensin II AT1-receptor. Drug Metab. Dispos. 35, 2166–2176 (2007).

    CAS  PubMed  Google Scholar 

  28. Zhang, J., Wang, H., Fan, Y., Yu, Z. & You, G. Regulation of organic anion transporters: role in physiology, pathophysiology, and drug elimination. Pharmacol. Ther. 217, 107647 (2021).

    CAS  PubMed  Google Scholar 

  29. Eraly, S. A. et al. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J. Biol. Chem. 281, 5072–5083 (2006).

    CAS  PubMed  Google Scholar 

  30. Fu, Y. et al. Organic anion transporter OAT3 enhances the glucosuric effect of the SGLT2 inhibitor empagliflozin. Am. J. Physiol. Renal Physiol. 315, F386–F394 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zou, L. et al. Molecular mechanisms for species differences in organic anion transporter 1, OAT1: implications for renal drug toxicity. Mol. Pharmacol. 94, 689–699 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ho, E. S., Lin, D. C., Mendel, D. B. & Cihlar, T. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J. Am. Soc. Nephrol. 11, 383–393 (2000).

    CAS  PubMed  Google Scholar 

  33. Mason, R. M. Studies on the effect of probenecid (benemid) in gout. Ann. Rheum. Dis. 13, 120–130 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cunningham, R. F., Israili, Z. H. & Dayton, P. G. Clinical pharmacokinetics of probenecid. Clin. Pharmacokinet. 6, 135–151 (1981).

    CAS  PubMed  Google Scholar 

  35. Granados, J. C., Bhatnagar, V. & Nigam, S. K. Blockade of organic anion transport in humans after treatment with the drug probenecid leads to major metabolic alterations in plasma and urine. Clin. Pharmacol. Ther. 112, 653–664 (2022).

    CAS  PubMed  Google Scholar 

  36. Cundy, K. C. Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin. Pharmacokinet. 36, 127–143 (1999).

    CAS  PubMed  Google Scholar 

  37. Beyer, K. H., Flippin, H., Verwey, W. F. & Woodward, R. The effect of para-aminohippuric acid on plasma concentration of penicillin in man. JAMA 126, 1007–1009 (1944).

    CAS  Google Scholar 

  38. Hong, M. et al. Human organic anion transporter hOAT1 forms homooligomers. J. Biol. Chem. 280, 32285–32290 (2005).

    CAS  PubMed  Google Scholar 

  39. Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing.eLife 7, e35383 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Wang, N. et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell 184, 370–383 e313 (2021).

    CAS  PubMed  Google Scholar 

  41. Drew, D., North, R. A., Nagarathinam, K. & Tanabe, M. Structures and general transport mechanisms by the major facilitator superfamily (MFS).Chem. Rev. 121, 5289–5335 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Khanppnavar, B. et al. Structural basis of organic cation transporter-3 inhibition. Nat. Commun. 13, 6714 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Brast, S. et al. The cysteines of the extracellular loop are crucial for trafficking of human organic cation transporter 2 to the plasma membrane and are involved in oligomerization. FASEB J. 26, 976–986 (2012).

    CAS  PubMed  Google Scholar 

  44. Keller, T. et al. The large extracellular loop of organic cation transporter 1 influences substrate affinity and is pivotal for oligomerization. J. Biol. Chem. 286, 37874–37886 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Miyano, M., Ago, H., Saino, H., Hori, T. & Ida, K. Internally bridging water molecule in transmembrane alpha-helical kink. Curr. Opin. Struct. Biol. 20, 456–463 (2010).

    CAS  PubMed  Google Scholar 

  46. Rizwan, A. N., Krick, W. & Burckhardt, G. The chloride dependence of the human organic anion transporter 1 (hOAT1) is blunted by mutation of a single amino acid. J. Biol. Chem. 282, 13402–13409 (2007).

    CAS  PubMed  Google Scholar 

  47. Perry, J. L., Dembla-Rajpal, N., Hall, L. A. & Pritchard, J. B. A three-dimensional model of human organic anion transporter 1: aromatic amino acids required for substrate transport. J. Biol. Chem. 281, 38071–38079 (2006).

    CAS  PubMed  Google Scholar 

  48. Beyer, K. H. Factors basic to the development of useful inhibitors of renal transport mechanisms. Arch. Int. Pharmacodyn. Ther. 98, 97–117 (1954).

    CAS  PubMed  Google Scholar 

  49. Cihlar, T. & Ho, E. S. Fluorescence-based assay for the interaction of small molecules with the human renal organic anion transporter 1. Anal. Biochem. 283, 49–55 (2000).

    CAS  PubMed  Google Scholar 

  50. Zhao, Y. et al. Conformational preferences of π–π stacking between ligand and protein, analysis derived from crystal structure data geometric preference of π–π interaction. Interdiscip. Sci. 7, 211–220 (2015).

    CAS  PubMed  Google Scholar 

  51. Fraser-Spears, R. et al. Comparative analysis of novel decynium-22 analogs to inhibit transport by the low-affinity, high-capacity monoamine transporters, organic cation transporters 2 and 3, and plasma membrane monoamine transporter. Eur. J. Pharmacol. 842, 351–364 (2019).

    CAS  PubMed  Google Scholar 

  52. Quistgaard, E. M., Low, C., Guettou, F. & Nordlund, P. Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat. Rev. Mol. Cell Biol. 17, 123–132 (2016).

    CAS  PubMed  Google Scholar 

  53. Hong, M., Zhou, F., Lee, K. & You, G. The putative transmembrane segment 7 of human organic anion transporter hOAT1 dictates transporter substrate binding and stability. J. Pharmacol. Exp. Ther. 320, 1209–1215 (2007).

    CAS  PubMed  Google Scholar 

  54. Liu, H. C. et al. Molecular properties of drugs interacting with SLC22 transporters OAT1, OAT3, OCT1, and OCT2: a machine-learning approach. J. Pharmacol. Exp. Ther. 359, 215–229 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Fujita, T. et al. Functional analysis of polymorphisms in the organic anion transporter, SLC22A6 (OAT1). Pharmacogenet. Genomics 15, 201–209 (2005).

    CAS  PubMed  Google Scholar 

  56. Bleasby, K., Hall, L. A., Perry, J. L., Mohrenweiser, H. W. & Pritchard, J. B. Functional consequences of single nucleotidepolymorphisms in the human organic anion transporter hOAT1 (SLC22A6). J. Pharmacol. Exp. Ther. 314, 923–931 (2005).

    CAS  PubMed  Google Scholar 

  57. Zazuli, Z. et al. The impact of genetic polymorphisms in organic cation transporters on renal drug disposition.Int. J. Mol. Sci. 21, 6627 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tzvetkov, M. V. et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin. Pharmacol. Ther. 86, 299–306 (2009).

    CAS  PubMed  Google Scholar 

  59. Engstrom, K. et al. Polymorphisms in genes encoding potential mercury transporters and urine mercury concentrations in populations exposed to mercury vapor from gold mining. Environ. Health Perspect. 121, 85–91 (2013).

    PubMed  Google Scholar 

  60. Wolff, N. A. et al. Cationic amino acids involved in dicarboxylate binding of the flounder renal organic anion transporter. J. Am. Soc. Nephrol. 12, 2012–2018 (2001).

    CAS  PubMed  Google Scholar 

  61. Feng, B., Dresser, M. J., Shu, Y., Johns, S. J. & Giacomini, K. M. Arginine 454 and lysine 370 are essential for the anion specificity of the organic anion transporter, rOAT3. Biochemistry 40, 5511–5520 (2001).

    CAS  PubMed  Google Scholar 

  62. Minuesa, G. et al. Transport of lamivudine[(-)-beta-l-2′,3′-dideoxy-3′-thiacytidine] and high-affinity interaction ofnucleoside reverse transcriptase inhibitors with human organic cationtransporters 1, 2, and 3.J. Pharmacol. Exp. Ther. 329, 252–261 (2009).

    CAS  PubMed  Google Scholar 

  63. Mulato, A. S., Ho, E. S. & Cihlar, T. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J. Pharmacol. Exp. Ther. 295, 10–15 (2000).

    CAS  PubMed  Google Scholar 

  64. Taniguchi, T. et al. Hypouricemic agents reduce indoxyl sulfate excretion by inhibiting the renal transporters OAT1/3 and ABCG2. Sci. Rep. 11, 7232 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaufhold, M. et al. Differential interaction of dicarboxylates with human sodium-dicarboxylate cotransporter 3 and organic anion transporters 1 and 3. Am. J. Physiol. Renal Physiol. 301, F1026–F1034 (2011).

    CAS  PubMed  Google Scholar 

  66. Tsigelny, I. F. et al. Conformational changes of the multispecific transporter organic anion transporter 1 (OAT1/SLC22A6) suggests a molecular mechanism for initial stages of drug and metabolite transport. Cell Biochem. Biophys. 61, 251–259 (2011).

    CAS  PubMed  Google Scholar 

  67. Janaszkiewicz, A. et al. Insights into the structure and function of the human organic anion transporter 1 in lipid bilayer membranes. Sci. Rep. 12, 7057 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shin, H. J. et al. Interactions of urate transporter URAT1 in human kidney with uricosuric drugs. Nephrology (Carlton) 16, 156–162 (2011).

    CAS  PubMed  Google Scholar 

  69. Enomoto, A. et al. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J. Pharmacol. Exp. Ther. 301, 797–802 (2002).

    CAS  PubMed  Google Scholar 

  70. Dalbeth, N. et al. Lesinurad, a selective uric acid reabsorption inhibitor, in combination with febuxostat in patients with tophaceous gout: findings of a phase III clinical trial. Arthritis Rheumatol. 69, 1903–1913 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Taniguchi, T. et al. Pharmacological evaluation of dotinurad, a selective urate reabsorption inhibitor. J. Pharmacol. Exp. Ther. 371, 162–170 (2019).

    CAS  PubMed  Google Scholar 

  72. Pao, S. S., Paulsen, I. T. & Saier, M. H. Jr. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yan, N. Structural biology of the major facilitator superfamily transporters. Annu. Rev. Biophys. 44, 257–283 (2015).

    CAS  PubMed  Google Scholar 

  74. Li, F. et al. Ion transport and regulation in a synaptic vesicle glutamate transporter. Science 368, 893–897 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Parker, J. L. et al. Cryo-EM structure of PepT2 reveals structural basis for proton-coupled peptide and prodrug transport in mammals.Sci. Adv. 7, eabh3355 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Killer, M., Wald, J., Pieprzyk, J., Marlovits, T. C. & Low, C. Structural snapshots of human PepT1 and PepT2 reveal mechanistic insights into substrate and drug transport across epithelial membranes. Sci. Adv. 7, eabk3259 (2021).

    CAS  PubMed  Google Scholar 

  77. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    CAS  PubMed  Google Scholar 

  78. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).

    CAS  PubMed  Google Scholar 

  82. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS  PubMed  Google Scholar 

  83. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    CAS  PubMed  Google Scholar 

  84. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    CAS  Google Scholar 

  86. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program at the National Institutes of Health (NIH), National Heart, Lung, and Blood Institute (NHLBI). This work utilized the NIH Multi-Institute Cryo-EM Facility (MICEF), the computational resources of the NIH High Performing Computation (HPC) Biowulf cluster (http://hpc.nih.gov) and the instruments maintained by the NHLBI Biochemistry Core. We thank H. Wang, Y. Cui and H. He for technical support on the electron microscopes and R. Saracuza for technical support on installation and maintenance of the in-house GPU computers.

Author information

Authors and Affiliations

Authors

Contributions

J.J. conceived the project. T.D., T.L., S.S. and Y.H. conducted cell culture and protein expression. T.D. and T.L. performed protein purification and cryo-EM sample preparation. T.D., T.L. and J.J. performed cryo-EM data collection and processing. T.D. and J.J. built the atomic models. J.J. and T.D. wrote the manuscript with input from all of the authors.

Corresponding author

Correspondence to Jiansen Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Katarzyna Ciazynska, in collaboration with the Nature Structural & Molecular Biology team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Protein purification of rOAT1.

a, Size exclusion chromatography (SEC) elution profile of rOAT1. b, SDS-PAGE image of purified rOAT1. The purification of rOAT1 was repeated more than three times with similar results.

Source data

Extended Data Fig. 2 Cryo-EM data of rOAT1.

a, A representative motion-corrected cryo-EM micrograph of rOAT1. A total of over 20,000 micrographs with a quality similar to this one were collected for this work. b, Representative 2D class averages of rOAT1 particles. The side length of each image box is 212 Å.

Extended Data Fig. 3 Cryo-EM data processing workflow for apo-rOAT1.

A set of composite masks used in 3D classification and 3D auto-refinement is shown at the top.

Extended Data Fig. 4 Cryo-EM data processing workflow for the rOAT1-PAH complex.

The 3D reconstruction of apo-rOAT1 was used as the initial model. Some top-view particles were randomly removed before the final 3D auto-refinement to improve the particle orientation distribution.

Extended Data Fig. 5 Cryo-EM data processing workflow for the rOAT1-probenecid complex.

The 3D reconstruction of apo-rOAT1 was used as the initial model.

Extended Data Fig. 6 Resolution estimation of cryo-EM 3D reconstructions of apo-rOAT1, the rOAT1-PAH complex, and the rOAT1-probenecid complex.

a-c, FSC curves (left), particle orientation plots (middle), and local resolution maps (right) of the 3D reconstructions of apo-rOAT1 (a), the rOAT1-PATH complex (b), and the rOAT1-probenecid complex (c). d, FSC curves of non-uniform 3D refinement of apo-rOAT1 using cryoSPARC.

Extended Data Fig. 7 High-resolution details in the cryo-EM density map of apo-rOAT1.

a-c, The cryo-EM densities (grey surfaces) of the transmembrane helices (a), the ECD (b), and the ICD (c) superimposed with the atomic model. d,e, Close-up views of the disulfide bonds in the ECD, showing the cryo-EM density map (grey surfaces) superimposed with the atomic model.

Extended Data Fig. 8 Comparison of the cryo-EM density maps of apo-rOAT1, the rOAT1-PAH complex, and the rOAT1-probenecid complex near the region of the substrate binding site.

a, apo-rOAT1. b, The rOAT1-PAH complex. c, The rOAT1-probenecid complex. The cryo-EM density maps are shown as grey surfaces. The residues of rOAT1 are colored in medium purple (NTD) or cyan (CTD). Water molecules are depicted by red spheres.

Extended Data Fig. 9 Cryo-EM density map of the PAH binding site in the rOAT1-PAH complex.

Three possible models of PAH (white stick models) are superimposed with the cryo-EM density map (grey surfaces) separately. The residues of rOAT1 are colored in medium purple (NTD) or cyan (CTD).

Extended Data Fig. 10 Cryo-EM density map of the probenecid binding site in the rOAT1-probenecid complex.

a, The cryo-EM density map (grey surfaces) of the rOAT1-probenecid complex superimposed with the atomic model. Probenecid is shown as a grey stick model. b, The same view of the cryo-EM density map of apo-rOAT1.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Reporting Summary

Peer Review File

Supplementary Video 1

Overall structure of apo-rOAT1. The sharpened cryo-EM map of apo-rOAT1 superimposed with the atomic model is first shown, followed by the atomic model with the transmembrane helices rainbow colored.

Supplementary Video 2

Water molecules in the structure of apo-rOAT1. The cryo-EM densities of bound/ordered water molecules are shown as gray surfaces. The hydrogen bonds involving water molecules are depicted by orange dashed lines.

Supplementary Video 3

The binding of PAH in rOAT1. The cryo-EM density map of the rOAT1–PAH complex (gray surface) is superimposed with the atomic model. Three possible poses of PAH (white stick model) in the binding site are shown sequentially.

Supplementary Video 4

The binding of probenecid in rOAT1. The cryo-EM density map of the rOAT1–probenecid complex (gray surface) is superimposed with the atomic model. Probenecid is shown as a gray stick model in the center.

Supplementary Video 5

A putative conformational conversion between the inward-facing and outward-facing states of rOAT1. The animation shows the morph between the inward-facing structure and the outward-facing model of rOAT1. The NTD and CTD rotate as rigid bodies without considering conformational changes within each of the two domains. The side chains of the charged residues (Asp, Glu, Lys, and Arg) are shown as ball-and-stick models.

Source data

Source Data Extended Data Fig. 1b

Unprocessed scan of gel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, T., Lian, T., Shu, S. et al. The substrate and inhibitor binding mechanism of polyspecific transporter OAT1 revealed by high-resolution cryo-EM. Nat Struct Mol Biol 30, 1794–1805 (2023). https://doi.org/10.1038/s41594-023-01123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01123-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research