Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An intermediate state allows influenza polymerase to switch smoothly between transcription and replication cycles

Abstract

Influenza polymerase (FluPol) transcribes viral mRNA at the beginning of the viral life cycle and initiates genome replication after viral protein synthesis. However, it remains poorly understood how FluPol switches between its transcription and replication states, especially given that the structural bases of these two functions are fundamentally different. Here we propose a mechanism by which FluPol achieves functional switching between these two states through a previously unstudied conformation, termed an ‘intermediate state’. Using cryo-electron microscopy, we obtained a structure of the intermediate state of H5N1 FluPol at 3.7 Å, which is characterized by a blocked cap-binding domain and a contracted core region. Structural analysis results suggest that the intermediate state may allow FluPol to transition smoothly into either the transcription or replication state. Furthermore, we show that the formation of the intermediate state is required for both the transcription and replication activities of FluPol, leading us to conclude that the transcription and replication cycles of FluPol are regulated via this intermediate state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transition from FluPolH5N1 to the T-state.
Fig. 2: Transition from the FluPolH5N1 to the R-state.
Fig. 3: The intermediate state is critical for polymerase activity.
Fig. 4: The contracted core of FluPolH5N1.
Fig. 5: The key role of the η7 loop in replication initiation of FluPol.
Fig. 6: Model of FluPol-mediated transitions in the viral life cycle.

Data availability

The cryo-EM maps of FluPolH5N1 complexes have been deposited in the Electron Microscopy Data Bank under accession numbers EMD-34496 (core region) and EMD-34497 (full length). The coordinates for the atomic model of the FluPolH5N1 complex have been deposited in the Protein Data Bank under accession number 8H69. Source data are provided with this paper.

References

  1. Moeller, A., Kirchdoerfer, R. N., Potter, C. S., Carragher, B. & Wilson, I. A. Organization of the influenza virus replication machinery. Science 338, 1631–1634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arranz, R. et al. The structure of native influenza virion ribonucleoproteins. Science 338, 1634–1637 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Coloma, R. et al. The structure of a biologically active influenza virus ribonucleoprotein complex. PLoS Pathog. 5, e1000491 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pflug, A., Guilligay, D., Reich, S. & Cusack, S. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 516, 355–360 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Reich, S. et al. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 516, 361–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Hatada, E., Hasegawa, M., Mukaigawa, J., Shimizu, K. & Fukuda, R. Control of influenza virus gene expression: quantitative analysis of each viral RNA species in infected cells. J. Biochem. 105, 537–546 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Taylor, J. M. et al. Use of specific radioactive probes to study transcription and replication of the influenza virus genome. J. Virol. 21, 530–540 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fodor, E. & Te Velthuis, A. J. W. Structure and function of the influenza virus transcription and replication machinery. Cold Spring Harb. Perspect. Med. 10, a038398 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Te Velthuis, A. J. W., Grimes, J. M. & Fodor, E. Structural insights into RNA polymerases of negative-sense RNA viruses. Nat. Rev. Microbiol. 19, 303–318 (2021).

    Article  Google Scholar 

  10. He, X. et al. Crystal structure of the polymerase PAC–PB1N complex from an avian influenza H5N1 virus. Nature 454, 1123–1126 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Chang, S. et al. Cryo-EM structure of influenza virus RNA polymerase complex at 4.3 Å resolution. Mol. Cell 57, 925–935 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Hengrung, N. et al. Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature 527, 114–117 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lukarska, M. et al. Structural basis of an essential interaction between influenza polymerase and Pol II CTD. Nature 541, 117–121 (2016).

    Article  PubMed  Google Scholar 

  14. Serna Martin, I. et al. A Mechanism for the activation of the influenza virus transcriptase. Mol. Cell 70, 1101–1110 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kouba, T., Drncová, P. & Cusack, S. Structural snapshots of actively transcribing influenza polymerase. Nat. Struct. Mol. Biol. 26, 460–470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carrique, L. et al. Host ANP32A mediates the assembly of the influenza virus replicase. Nature 587, 638–643 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wandzik, J. M. et al. A structure-based model for the complete transcription cycle of influenza polymerase. Cell 181, 877–893 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Thierry, E. et al. Influenza polymerase can adopt an alternative configuration involving a radical repacking of PB2 domains. Mol. Cell 61, 125–137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wandzik, J. M., Kouba, T. & Cusack, S. Structure and function of influenza polymerase. Cold Spring Harb. Perspect. Med. 11, a038372 (2020).

    Article  Google Scholar 

  20. De Vlugt, C., Sikora, D. & Pelchat, M. Insight into influenza: a virus cap-snatching. Viruses 10, 641 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Guilligay, D. et al. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat. Struct. Mol. Biol. 15, 500–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Krischuns, T. et al. Type B and type A influenza polymerases have evolved distinct binding interfaces to recruit the RNA polymerase II CTD. PLoS Pathog. 18, e1010328 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reich, S., Guilligay, D. & Cusack, S. An in vitro fluorescence based study of initiation of RNA synthesis by influenza B polymerase. Nucleic Acids Res. 45, 3353–3368 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan, P. et al. Crystal structure of an avian influenza polymerase PAN reveals an endonuclease active site. Nature 458, 909–913 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Dias, A. et al. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458, 914–918 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Deng, T., Vreede, F. T. & Brownlee, G. G. Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J. Virol. 80, 2337–2348 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sugiyama, K., Kawaguchi, A., Okuwaki, M. & Nagata, K. pp32 and APRIL are host cell-derived regulators of influenza virus RNA synthesis from cRNA. eLife 4, e08939 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Domingues, P. & Hale, B. G. Functional insights into ANP32A-dependent influenza A virus polymerase host restriction. Cell Rep. 20, 2538–2546 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hay, A. J., Lomniczi, B., Bellamy, A. R. & Skehel, J. J. Transcription of the influenza virus genome. Virology 83, 337–355 (1977).

    Article  CAS  PubMed  Google Scholar 

  30. Barrett, T., Wolstenholme, A. J. & Mahy, B. W. J. Transcription and replication of influenza virus RNA. Virology 98, 211–225 (1979).

    Article  CAS  PubMed  Google Scholar 

  31. Peng, Q. et al. Structural insight into RNA synthesis by influenza D polymerase. Nat. Microbiol. 4, 1750–1759 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Fan, H. et al. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature 573, 287–290 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, Y. et al. Structural and functional characterization of K339T substitution identified in the PB2 subunit cap-binding pocket of influenza A virus. J. Biol. Chem. 288, 11013–11023 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song, W. et al. The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication. Nat. Commun. 5, 5509 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Long, J. S. et al. Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature 529, 101–104 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nilsson-Payant, B. E., Sharps, J., Hengrung, N. & Fodor, E. The surface-exposed PA51–72-loop of the influenza A virus polymerase is required for viral genome replication. J. Virol. 92, e00687–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kirui, J., Bucci, M. D., Poole, D. S. & Mehle, A. Conserved features of the PB2 627 domain impact influenza virus polymerase function and replication. J. Virol. 88, 5977–5986 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Oymans, J. & Te Velthuis, A. J. W. A mechanism for priming and realignment during influenza A virus replication. J. Virol. 92, e01773-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. te Velthuis, A. J. W., Robb, N. C., Kapanidis, A. N. & Fodor, E. The role of the priming loop in influenza A virus RNA synthesis. Nat. Microbiol. 1, 16029 (2016).

    Article  Google Scholar 

  40. Keown, J. R. et al. Mapping inhibitory sites on the RNA polymerase of the 1918 pandemic influenza virus using nanobodies. Nat. Commun. 13, 251 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martínez-Alonso, M., Hengrung, N. & Fodor, E. RNA-free and ribonucleoprotein-associated influenza virus polymerases directly bind the serine-5-phosphorylated carboxyl-terminal domain of host RNA polymerase II. J. Virol. 90, 6014–6021 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mok, C. K. P. et al. Amino acid residues 253 and 591 of the PB2 protein of avian influenza virus A H9N2 contribute to mammalian pathogenesis. J. Virol. 85, 9641–9645 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Manzoor, R. et al. PB2 protein of a highly pathogenic avian influenza virus strain A/chicken/Yamaguchi/7/2004 (H5N1) determines its replication potential in pigs. J. Virol. 83, 1572–1578 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Bussey, K. A., Bousse, T. L., Desmet, E. A., Kim, B. & Takimoto, T. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J. Virol. 84, 4395–4406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mok, C. K. P. et al. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J. Virol. 88, 3568–3576 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yamaji, R. et al. Identification of PB2 mutations responsible for the efficient replication of H5N1 influenza viruses in human lung epithelial cells. J. Virol. 89, 3947–3956 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cai, M. et al. The R251K substitution in viral protein PB2 increases viral replication and pathogenicity of Eurasian avian-like H1N1 swine influenza viruses. Viruses 12, 52 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van Dijk, A. A., Makeyev, E. V. & Bamford, D. H. Initiation of viral RNA-dependent RNA polymerization. J. Gen. Virol. 85, 1077–1093 (2004).

    Article  PubMed  Google Scholar 

  49. Gilman, M. S. A. et al. Structure of the respiratory syncytial virus polymerase complex. Cell 179, 193–204 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abdella, R., Aggarwal, M., Okura, T., Lamb, R. A. & He, Y. Structure of a paramyxovirus polymerase complex reveals a unique methyltransferase-CTD conformation. Proc. Natl Acad. Sci. USA 117, 4931–4941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Horwitz, J. A., Jenni, S., Harrison, S. C. & Whelan, S. P. J. Structure of a rabies virus polymerase complex from electron cryo-microscopy. Proc. Natl Acad. Sci. USA 117, 2099–2107 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pan, J. et al. Structure of the human metapneumovirus polymerase phosphoprotein complex. Nature 577, 275–279 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Peng, R. et al. Structural insight into arenavirus replication machinery. Nature 579, 615–619 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, P. et al. Structure of severe fever with thrombocytopenia syndrome virus L protein elucidates the mechanisms of viral transcription initiation. Nat. Microbiol. 5, 864–871 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Liang, B. et al. Structure of the L protein of vesicular stomatitis virus from electron cryomicroscopy. Cell 162, 314–327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gerlach, P., Malet, H., Cusack, S. & Reguera, J. Structural insights into bunyavirus replication and its regulation by the vRNA promoter. Cell 161, 1267–1279 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cao, D. et al. Cryo-EM structure of the respiratory syncytial virus RNA polymerase. Nat. Commun. 11, 368–368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arragain, B. et al. Pre-initiation and elongation structures of full-length La Crosse virus polymerase reveal functionally important conformational changes. Nat. Commun. 11, 3590 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vogel, D. et al. Structural and functional characterization of the severe fever with thrombocytopenia syndrome virus L protein. Nucleic Acids Res. 48, 5749–5765 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Garriga, D., Ferrer-Orta, C., Querol-Audí, J., Oliva, B. & Verdaguer, N. Role of motif B loop in allosteric regulation of RNA-dependent RNA polymerization activity. J. Mol. Biol. 425, 2279–2287 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Sholders, A. J. & Peersen, O. B. Distinct conformations of a putative translocation element in poliovirus polymerase. J. Mol. Biol. 426, 1407–1419 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Luytjes, W., Krystal, M., Enami, M., Parvin, J. D. & Palese, P. Amplification, expression, and packaging of a foreign gene by influenza virus. Cell 59, 1107–1113 (1989).

    Article  CAS  PubMed  Google Scholar 

  63. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  64. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  70. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hopkins, J. B., Gillilan, R. E. & Skou, S. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J. Appl. Crystallogr. 50, 1545–1553 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. & Svergun, D. I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003).

    Article  CAS  Google Scholar 

  74. Manalastas-Cantos, K. et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J. Appl. Crystallogr. 54, 343–355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Svergun, D., Barberato, C. & Koch, M. H. J. CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank staff in the Center of Cryo-Electron Microscopy, Zhejiang University, for their assistance during data collection. We thank G. Ji, X. Huang, B. Zhu, L. Zhang and D. Fan in the Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Science, for their assistance during data collection and T. Niu for computational assistance. We thank Y. Ma and P. Xia for their help during sample screening at the State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences. We thank the use of Cryo-EM instruments in the Cryo-EM Facility Center of Southern University of Science and Technology. We thank H. Zhang (Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences) for assisting us with the detection of radioactivity. We thank the staff from BL19U2 beamline of National Facility for Protein Science in Shanghai at Shanghai Synchrotron Radiation Facility for assistance during data collection. This work was supported by the National Natural Science Foundation of China (31530015, 82071346, 32000860 and 32271321), ‘Pearl River Talent Plan’ Innovation and Entrepreneurship Team Project of Guangdong Province (2019ZT08Y464), Natural Science Foundation of Guangdong Province, China (2020B1515020035), the Key Fundamental Research Projects of Shenzhen Science and Technology Plan (JCYJ20200109142418595 and JCYJ20200109142412265), Fund of Shenzhen Key Laboratory (ZDSYS20220606100803007) and Shenzhen Science and technology planning project (RCBS20200714114922284).

Author information

Authors and Affiliations

Authors

Contributions

H. Li, Y.W., M.L., L.G., Y.G., Q.W., J.Z., Z.L., X.Z., L.Z., P.L. and Z.R. performed the experiments. H. Li, Y.W., M.L., Y.L. and H. Liang wrote the paper. Y.L. and H. Liang designed the experiments. All authors reviewed the results and approved the final version of the paper.

Corresponding authors

Correspondence to Yingfang Liu or Huanhuan Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Aartjan te Velthuis, Dong Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Beth Moorefield and Dimitris Typas, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cryo-EM analyses of FluPolH5N1 bound to vRNA promoter.

a. A representative cryo-EM micrograph of FluPolH5N1 bound to vRNA promoter. b, c. Representative 2D classifications of FluPolH5N1 complex particles. White arrows indicate the vRNA promoter and yellow arrows indicate the flexible domains above the core region. d. Euler angle distributions of FluPolH5N1 complex in the final 3D reconstructions. e. Local resolution evaluations of cryo-EM maps of FluPolH5N1 complex by ResMap. f, g. Gold standard Fourier shell correlation curves for resolution evaluation of core region (f) and full-length (g) at 0.143 FSC. The FSC curves of the final refined models versus cryo-EM maps at 0.5 FSC are also shown. h. Representative regions of the cryo-EM structure of FluPolH5N1 are shown as cartoon representation colored as same as those in Fig. 1a. The density maps of motif pre-A (residues 225-243) and motif C (residues 436-453) were shown. i. The density maps of 3′-vRNA and 5′-vRNA. J, k. Plots of the global half-map FSC (solid red line) and map-to-model FSC (dotted green line) of full-length (j) and core region (k) FluPolH5N1 and together with the spread of directional resolution values defined by ±1σ from the mean.

Extended Data Fig. 2 Data processing strategies for 3D reconstruction of Flu PolH5N1 complex bound to vRNA promoter.

The black boxes indicate the selected 3D classes during data processing. The red boxes indicate the final maps.

Extended Data Fig. 3 The 3′-vRNA promoter end resting outside in FluPolH5N1.

The structure of the vRNA promoter in FluPolH5N1 complex is shown as cartoon (left) and stick (right) representations. Interacting residues in FluPolH5N1 stabilized the 3′-vRNA promoter end are shown as stick representation. For clarity, only polar interactions are shown as black dashed lines. Colors are shown as same as those in Fig. 1a.

Extended Data Fig. 4 The density maps and expressions of mutants of FluPolH5N1.

a. The density maps of the hinge region, η7 loop in PB1 (left) and residues stabilizing the inactive conformation of PB2-C FluPolH5N1 (right). Colors are shown as same as those in Fig. 1a. b, c. SDS-PAGE analysis of purified mutant proteins expressed using the Bac-to-Bac expression system. Data shown are representative of two independent experiments with similar results. d, e. Western blot analysis of the expression of mutant proteins stabilizing the inactive conformation of PB2-C (d) and the PB2 G248A mutant (e) of FluPolH5N1. Data shown are representative of two independent experiments with similar results.

Source data

Extended Data Fig. 5 SAXS analysis of the experimental profiles and the calculated profiles.

a-c. The experimental SAXS scattering curve of wild-type FluPol H5N1 (gray) fits with the calculated curves of the intermediate FluPolH5N1 (a, black), transcriptase (b, blue, 5MSG) and replicase (c, green, 6XZG), respectively. d, e. The experimental profiles of E517A (d, red) and K586A/R589A (e, orange) fit the calculated profiles from transcriptase (blue, 5MSG). f, g. The experimental profiles of E517A (f, red) and K586A/R589A (g, orange) fit the calculated profiles from replicase (green, 6XZG). The χ2 value is shown as indicated. Data were analyzed by BioXTAS RAW and ATSAS packages.

Extended Data Fig. 6 Comparison of the mRNA cap analogs binding capacity.

a-c. m7GTP binding of WT PB2cap (a), H432A PB2cap (b) and R436A PB2cap (c) were analyzed by ITC. The raw data are shown at the top and the integrated data shown with continuous lines are in the bottom. d, e. Table (d) and histogram (e) summary of binding parameter KD. Data are shown as mean ± s.e.m form n = 3 biologically independent samples. ns, no significance. The P values was analyzed by one-way ANOVA.

Source data

Extended Data Fig. 7 Bio-layer interferometry (BLI) binding profiles of WT FluPol and mutants to 3′ vRNA.

a-c. The binding affinities between the WT FluPol (a), mutants M507A (b), E508A (c) and 3′ vRNA at indicated concentrations were determined by BLI experiment, respectively. d. The values of KD, KD error and Full R2 were shown in the table. The data shown are representative of two independent experiments with similar results.

Source data

Extended Data Fig. 8 Structures of core regions in product disassociation and recycling states during the end of transcription closely resemble the intermediate core of FluPolH5N1.

The secondary structures of catalytic cavities of FluPolH5N1 (in green), FluPol in transcription-product disassociation state (a, PDB: 6T0U, in pink), FluPol in transcription-recycling state (b, PDB: 6T2C, in wheat). Close-up views show the similar conformation of the η7 loop protruding towards the cavity in these core regions. The priming loop in FluPolH5N1 is shown while the priming loops in product disassociation and recycling states are extruded and invisible.

Extended Data Fig. 9 The η7 helix in the viral polymerase cavity is conserved among different viruses.

The RdRp regions in RABV (rabies virus, PDB: 6UEB), VSV (vesicular stomatitis virus, PDB: 6U1X), HRSV (human respiratory syncytial virus, PDB: 6PZK), HMPV (human metapneumovirus, PDB: 6U5O), HPIV (human parainfluenza virus, PDB: 6V85), LACV (La Crosse orthobunyavirus, PDB: 5AMQ), LASV (Lassa mammarenavirus, PDB: 6KLC), MACV (Machupo mammarenavirus, PDB: 6KLD) and SFTSV (thrombocytopaenia syndrome virus, PDB: 6Y6K) polymerases are shown as same orientation in cartoon representation (green). The positions of fingers, palm and thumb subdomains are labeled. The homologous structures of η7 helix (in blue) are found in all of these polymerases. Despite of sequence variability, bulky residues like phenylalanine, tryptophan and arginine, are observed at the homologous position of Met507 and Glu508 in influenza polymerase.

Supplementary information

Reporting Summary

Supplementary Table 1

Supplementary Table 1. RNA sequences used for biochemical assays and cryo-EM. Supplementary Table 2. Primer sequences used for site-directed PCR mutagenesis to construct plasmids expressing mutant FluPol. Supplementary Table 3. P values for the statistical analyses in figures.

Supplementary Video 1

Transition from the intermediate conformation to replicase. FluPol is shown as a cartoon representation colored the same as in Fig. 1a. The 424-loop in the cap-binding domain and the PB2 helix α11 and hinge are colored in blue and black, respectively, for clarity. The transition from the intermediate FluPol to replicase is stabilized by newly synthesized FluPol (called encapsidating FluPol after replicase assembly) through interactions with the hinge region. After the rotation of the whole PB2-C, ANP32A induces the 627 domain to further rotate to an exposed position with host-specific residue 627 being highly accessible, thereby finishing the assembly of replicase. The trajectory of intermediate conformations was calculated by UCSF Chimera.

Supplementary Video 2

Transition from the intermediate conformation to transcriptase. FluPol is shown as a cartoon representation colored the same as in Fig. 1a. The 424-loop in the cap-binding domain and the PB2 helix α11 and hinge are colored in blue and black, respectively, for clarity. The transition from the intermediate FluPol to transcriptase is stabilized by the Pol II CTD peptide binding on the polymerase surface. Pol II CTD binding triggers conformational changes of the 627 domain, thereby releasing the cap-binding domain and activating the polymerase for ‘cap-snatching’ toward the transcription preinitiation state. The trajectory of intermediate conformations was calculated by UCSF Chimera.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 2

Uncropped gel.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 3

Uncropped gel.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 5

Uncropped gel.

Source Data Extended Data Fig. 4

Uncropped gel and unprocessed western blots.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wu, Y., Li, M. et al. An intermediate state allows influenza polymerase to switch smoothly between transcription and replication cycles. Nat Struct Mol Biol 30, 1183–1192 (2023). https://doi.org/10.1038/s41594-023-01043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01043-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing