Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Membrane perturbation by lipidated Atg8 underlies autophagosome biogenesis

Abstract

Autophagosome biogenesis is an essential feature of autophagy. Lipidation of Atg8 plays a critical role in this process. Previous in vitro studies identified membrane tethering and hemi-fusion/fusion activities of Atg8, yet definitive roles in autophagosome biogenesis remained controversial. Here, we studied the effect of Atg8 lipidation on membrane structure. Lipidation of Saccharomyces cerevisiae Atg8 on nonspherical giant vesicles induced dramatic vesicle deformation into a sphere with an out-bud. Solution NMR spectroscopy of Atg8 lipidated on nanodiscs identified two aromatic membrane-facing residues that mediate membrane-area expansion and fragmentation of giant vesicles in vitro. These residues also contribute to the in vivo maintenance of fragmented vacuolar morphology under stress in fission yeast, a moonlighting function of Atg8. Furthermore, these aromatic residues are crucial for the formation of a sufficient number of autophagosomes and regulate autophagosome size. Together, these data demonstrate that Atg8 can cause membrane perturbations that underlie efficient autophagosome biogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Membrane deformation of GUVs by Atg8 lipidation.
Fig. 2: NMR observation of Atg8–PE reconstituted onto lipid bilayer nanodiscs.
Fig. 3: Identification of Atg8 residues essential for membrane deformation in vitro.
Fig. 4: Role of Atg8 aromatic residues in maintaining vacuolar membrane morphology.
Fig. 5: Role of Atg8 aromatic residues on autophagy.
Fig. 6: Aromatic residues in mammalian Atg8 are important for efficient degradation of p62 gels.
Fig. 7: Role of membrane perturbation by Atg8.

Similar content being viewed by others

Data availability

Microscopic images are available upon request. NMR spectra are deposited online at https://doi.org/10.6084/m9.figshare.14727903. Source data are provided with this paper.

References

  1. Morishita, H. & Mizushima, N. Diverse cellular roles of autophagy. Annu. Rev. Cell Dev. Biol. 35, 453–475 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Kirkin, V. & Rogov, V. V. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway. Mol. Cell 76, 268–285 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Noda, N. N., Wang, Z. & Zhang, H. Liquid–liquid phase separation in autophagy. J. Cell Biol. 219, e202004062 (2020).

  5. Gatica, D., Lahiri, V. & Klionsky, D. J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 20, 233–242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakatogawa, H. Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Biol. 439–458 (2020).

  7. Yamamoto, H. et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198, 219–233 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mari, M. et al. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol. 190, 1005–1022 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ge, L. et al. Remodeling of ER-exit sites initiates a membrane supply pathway for autophagosome biogenesis. EMBO Rep. 18, 1586–1603 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ge, L., Melville, D., Zhang, M. & Schekman, R. The ER–Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife 2, e00947 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Davis, S. et al. Sec24 phosphorylation regulates autophagosome abundance during nutrient deprivation. Elife 5, e21167 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Shima, T., Kirisako, H. & Nakatogawa, H. COPII vesicles contribute to autophagosomal membranes. J. Cell Biol. 218, 1503–1510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Biazik, J., Yla-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy 11, 439–451 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hayashi-Nishino, M. et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11, 1433–1437 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Yla-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180–1185 (2009).

    Article  PubMed  Google Scholar 

  16. Karanasios, E. et al. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat. Commun. 7, 12420 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uemura, T. et al. A cluster of thin tubular structures mediates transformation of the endoplasmic reticulum to autophagic isolation membrane. Mol. Cell. Biol. 34, 1695–1706 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Osawa, T., Ishii, Y. & Noda, N. N. Human ATG2B possesses a lipid transfer activity which is accelerated by negatively charged lipids and WIPI4. Genes Cells 25, 65–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Osawa, T. et al. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 26, 281–288 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Maeda, S., Otomo, C. & Otomo, T. The autophagic membrane tether ATG2A transfers lipids between membranes. Elife 8, e45777 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Valverde, D. P. et al. ATG2 transports lipids to promote autophagosome biogenesis. J. Cell Biol. 218, 1787–1798 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kirisako, T. et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol. 147, 435–446 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Klionsky, D. J. & Schulman, B. A. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat. Struct. Mol. Biol. 21, 336–345 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Noda, N. N., Ohsumi, Y. & Inagaki, F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 584, 1379–1385 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Birgisdottir, A. B., Lamark, T. & Johansen, T. The LIR motif—crucial for selective autophagy. J. Cell Sci. 126, 3237–3247 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Xie, Z., Nair, U. & Klionsky, D. J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19, 3290–3298 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sou, Y. S. et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol. Biol. Cell 19, 4762–4775 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mikawa, T., Kanoh, J. & Ishikawa, F. Fission yeast Vps1 and Atg8 contribute to oxidative stress resistance. Genes Cells 15, 229–242 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, C. W., Miao, Y. H. & Chang, Y. S. A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J. Cell Biol. 206, 357–366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tamura, N., Oku, M. & Sakai, Y. Atg8 regulates vacuolar membrane dynamics in a lipidation-independent manner in Pichia pastoris. J. Cell Sci. 123, 4107–4116 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, X. M. et al. Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein. Elife 7, e41237 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Knorr, R. L. et al. Membrane morphology is actively transformed by covalent binding of the protein Atg8 to PE-lipids. PLoS ONE 9, e115357 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kaufmann, A., Beier, V., Franquelim, H. G. & Wollert, T. Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell 156, 469–481 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165–178 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Nair, U. et al. SNARE proteins are required for macroautophagy. Cell 146, 290–302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weidberg, H. et al. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell 20, 444–454 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Wu, F. et al. Structural basis of the differential function of the two C. elegans Atg8 homologs, LGG-1 and LGG-2, in autophagy. Mol. Cell 60, 914–929 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Ma, P. et al. Preparation of a functional GABARAP–lipid conjugate in nanodiscs and its investigation by solution NMR spectroscopy. Chembiochem 11, 1967–1970 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Tsuboyama, K. et al. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354, 1036–1041 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Yamazaki, M. The single GUV method to reveal elementary processes of leakage of internal contents from liposomes induced by antimicrobial substances. Adv. Planar Lipid Bilayers Liposomes 7, 121–142 (2008).

    Article  CAS  Google Scholar 

  43. Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D. & Evans, E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Karal, M. A., Alam, J. M., Takahashi, T., Levadny, V. & Yamazaki, M. Stretch-activated pore of the antimicrobial peptide, magainin 2. Langmuir 31, 3391–3401 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Miao, L., Seifert, U., Wortis, M. & Dobereiner, H. G. Budding transitions of fluid-bilayer vesicles: the effect of area-difference elasticity. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 49, 5389–5407 (1994).

    CAS  Google Scholar 

  46. Heinrich, V. V., Svetina, S. & Zeks, B. Nonaxisymmetric vesicle shapes in a generalized bilayer-couple model and the transition between oblate and prolate axisymmetric shapes. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 48, 3112–3123 (1993).

    CAS  Google Scholar 

  47. Maruyama, T. & Noda, N. N. Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. J. Antibiot. (Tokyo) https://doi.org/10.1038/ja.2017.104 (2017).

    Article  Google Scholar 

  48. Dominguez, C., Boelens, R. & Bonvin, A. M. HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Amar, N., Lustig, G., Ichimura, Y., Ohsumi, Y. & Elazar, Z. Two newly identified sites in the ubiquitin-like protein Atg8 are essential for autophagy. EMBO Rep. 7, 635–642 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hanada, T., Satomi, Y., Takao, T. & Ohsumi, Y. The amino-terminal region of Atg3 is essential for association with phosphatidylethanolamine in Atg8 lipidation. FEBS Lett. 583, 1078–1083 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Noda, T., Matsuura, A., Wada, Y. & Ohsumi, Y. Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 210, 126–132 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Mizushima, N. The ATG conjugation systems in autophagy. Curr. Opin. Cell Biol. 63, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Nguyen, T. N. et al. Atg8 family LC3/GABARAP proteins are crucial for autophagosome–lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J. Cell Biol. 215, 857–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Campelo, F., McMahon, H. T. & Kozlov, M. M. The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys. J. 95, 2325–2339 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Matoba, K. et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27, 1185–1193 (2020).

    Article  PubMed  CAS  Google Scholar 

  56. Maeda, S. et al. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat. Struct. Mol. Biol. 27, 1194–1201 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Fujioka, Y. et al. Phase separation organizes the site of autophagosome formation. Nature 578, 301–305 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Itakura, E. & Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764–776 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Noda, N. N. et al. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell 44, 462–475 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Yamada, Y. et al. The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J. Biol. Chem. 282, 8036–8043 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Kumeta, H. et al. The NMR structure of the autophagy-related protein Atg8. J. Biomol. NMR 47, 237–241 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Noda, N. N., Fujioka, Y., Hanada, T., Ohsumi, Y. & Inagaki, F. Structure of the Atg12–Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep. 14, 206–211 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Denisov, I. G., Grinkova, Y. V., Lazarides, A. A. & Sligar, S. G. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J. Am. Chem. Soc. 126, 3477–3487 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Yamasaki, A. et al. Liquidity is a critical determinant for selective autophagy of protein condensates. Mol. Cell 77, 1163–1175 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Sprangers, R., Velyvis, A. & Kay, L. E. Solution NMR of supramolecular complexes: providing new insights into function. Nat. Methods 4, 697–703 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Qi, Y., Lee, J., Klauda, J. B. & Im, W. CHARMM-GUI Nanodisc Builder for modeling and simulation of various nanodisc systems. J. Comput. Chem. 40, 893–899 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Stroet, M. et al. Automated Topology Builder Version 3.0: prediction of solvation free enthalpies in water and hexane. J. Chem. Theory Comput. 14, 5834–5845 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Mazhab-Jafari, M. T. et al. Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc. J. Am. Chem. Soc. 135, 3367–3370 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Ando for assistance with nanodisc preparation; T. Kotani and C. Kakuta (Tokyo Institute of Technology) for preparing yeast strains; M. Lazarou (Monash University) for providing HeLa cells with disruption of six mammalian ATG8s; and N. Mizushima, I. Koyama-Honda and Y. Sakai (The University of Tokyo) for discussion. This work was supported in part by JSPS KAKENHI grant nos. 18H03989 and 19H05707 (to N.N.N.), 20K06552 (to T.F.), 19H05712 (to T.K), 19H05708 (to H.N. and Y.O.), 16H06375 (to Y.O.), 17H06097 (to I.S.), 20K06549 (to S.K.), 19H05706 and 21H04771 (to M.K.); JSPS A3 foresight program (to M.K.); CREST, Japan Science and Technology Agency Grant number JPMJCR13M7 (to N.N.N. and H.N.); JPMJCR20E3 (to N.N.N.); AMED-CREST, Japan Agency for Medical Research and Development Grant no. 21gm1410004s0102 (to M.K. and H.N.); and grants from the Takeda Science Foundation (to N.N.N. and M.K.), Mochida Memorial Foundation for Medical and Pharmaceutical Research (to N.N.N.) and the Tokyo Biochemical Research foundation (to N.N.N. and J.M.A.).

Author information

Authors and Affiliations

Authors

Contributions

T.M., J.M.A. and N.N.N. designed the research. T.M. and Y.I. performed sample preparation. T.M. and I.S. performed NMR experiments. T.M. and J.M.A. performed GUV experiments. H.K., H.N. and Y.O. performed budding yeast experiments. T.F. and T.K. performed fission yeast experiments. S.K. and M.K. performed mammalian experiments. T.M., J.M.A., T.F., S.K., M.K., T.K., H.N. and N.N.N. analyzed data. T.M. and N.N.N. wrote the manuscript. All authors discussed the results and commented on the manuscript. N.N.N. supervised the work.

Corresponding author

Correspondence to Nobuo N. Noda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Structural & Molecular Biology thanks Liang Ge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Inês Chen and Anke Sparmann were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Membrane deformation upon Atg8 lipidation.

a, Membrane deformation of GUV upon lipidation of mCherry–Atg8. GUVs are produced from lipid films containing POPC:POPE:PI=30:60:10 (mol%). Experiments were repeated independently 10 times with similar results. Scale bar, 10 μm. b, Effect of chemical anchoring of mCherry-Atg8G116C on GUVs incorporating POPC:POPE:PI:PE MCC=50:30:10:10 (mol%). Experiments were repeated independently 5 times with similar results for wild-type, whereas it was performed once for each mutant. Scale bar, 10 μm. c, Change in membrane area of GUV upon mCherry-Atg8 lipidation. The results of the other 5 experiments related to Fig.1g are shown. Source data for graphs are available online.

Source data

Extended Data Fig. 2 Reconstitution of Atg8-PE onto lipid bilayer nanodiscs.

a, Atg8–PE formation on nanodisc incorporating various amounts of PE. Lipidation reaction mixtures containing Atg8, Atg7, Atg3, nanodiscs incorporating 50–95% POPC and 5–50 mol% POPE and MgATP are incubated for 1 hr in the presence and absence of Atg12–Atg5–Atg16N and subjected to urea SDS–PAGE. The gel is stained by Coomassie brilliant blue. At lower concentration of PE, Atg8–MSP1D1 conjugate is produced as a byproduct. The experiment was performed once. b, Quantification of Atg8 lipidation in (a). The population of Atg8-PE is calculated from the band brightness in (a) measured by ImageJ software. c, Purification of Atg8–PE reconstituted nanodiscs incorporating 70 mol% POPC and 30 mol% POPE by a cation exchange column. The ratio of MSP1D1 and Atg8–PE in the band brightness is approximately 2, indicating that one Atg8–PE molecule is reconstituted per nanodisc on average. d, Delipidation of Atg8–PE by Atg4. Atg8-PE is incubated with Atg4 and delipidation is confirmed by urea SDS–PAGE as shown in the right panel. e, 1H-15N HSQC spectrum of [u-15N]-labeled Atg8-PE on nanodiscs. Few amide signals are observed. f, Size exclusion chromatography of Atg8-PE (blue) and empty (black) nanodiscs. SDS-PAGE analysis of the elution peak of Atg8-PE nanodiscs is shown in the right panel. Source data for graphs are available online. Experiments were repeated once (a) or three times independently (c,d,f) with similar results.

Source data

Extended Data Fig. 3 NMR spectral changes of Atg8 upon lipidation and delipidation.

a, Schematic representation of NMR sample preparation. Atg8–PE is produced onto lipid bilayer nanodiscs incorporating 70 mol% POPC and 30 mol% POPE via a lipidation reaction mixture containing Atg7, Atg3, Atg12–Atg5–Atg16N, and MgATP. Resultant Atg8–PE is purified to remove conjugation machinery. Delipidation of Atg8–PE is achieved by the addition of Atg4. b, 1H-13C HMQC spectra of {u-2H, Met-[13CH3], Alaβ-[13CH3], Ileδ1-[13CH3], Leu/Val-[13CH3,12CD3]}-labeled Atg8, Atg8-PE and delipidated Atg8. Each signal is assigned based on the data deposited in the Biological Magnetic Resonance Data Bank (BMRB entry:16835). For methyl groups in Leu and Val residues, methyl signals with lower and higher 1H chemical shift are denoted as residue name with a and b, respectively. NMR signals derived from phospholipids in nanodiscs are colored in brown. Lipidation and delipidation are confirmed by urea SDS-PAGE (Extended Data Fig. 2). c, Overlay of 1H-13C HMQC spectra of Atg8 and Atg8-PE. Minor signals observed in Atg8-PE and delipidated Atg8 are labeled with asterisk.

Extended Data Fig. 4 Modeling of Atg8-PE nanodisc using HADDOCK.

a, HADDOCK scores of final 200 docked structures of Atg8-PE nanodisc. 10 structures with the lowest HADDOCK scores are colored in blue. b, Superposition of 10 docked structures with the lowest HADDOCK scores. Atg8 and MSP1D1 are shown as ribbon model. POPC lipids are shown as stick model. c, Orientations of Atg8-PE on membranes. Carbon atoms of NMR-probed methyl groups are shown as sphere colored according to Fig. 2. The docked structure with the lowest HADDOCK score shown in Fig. 2 belongs to Orientation IV. Source data for graphs are available online.

Source data

Extended Data Fig. 5 Change in membrane area upon lipidation of Atg8 mutants.

a,b, Changes in membrane area of GUV upon lipidation of mCherry–Atg8F77A (a) and mCherry–Atg8F79A (b). The results of the other experiments related to Fig. 3 are shown. Source data for graphs are available online.

Source data

Extended Data Fig. 6 Role of Atg8 aromatic residues on autophagosome formation.

a, Electron micrographs of autophagosomes accumulated in cytosol. Autophagy in atg8Δypt7Δcells expressing Atg8 variant is induced by rapamycin treatment for 4 hr and subjected to rapid freezing and freeze-substitution fixation. Arrow heads indicate autophagosomes. Scale bars, 1 μm. The experiment was performed once. b,c, The number (b) and size (c) of autophagosome in atg8Δypt7Δcells expressing Atg8 variant. Fourteen cells were analyzed for Atg8 and Atg8F77A. Twelve cells were analyzed for Atg8F79A. Total numbers of autophagosomes were 71 for Atg8, 44 for Atg8F77A, and 36 for Atg8F79A. The center of the box represents the median; the top and the bottom edges of the box represent the third and first quartiles, respectively. Whiskers represent minima and maxima. ****P = 4.7 × 10−11 (Size, Atg8F77A), 8.0 × 10−15 (Size, Atg8F79A); **P = 2.7 × 10−3 (Number, Atg8F77A), 4.1 × 10−3 (Number, Atg8F79A); n.s., not significant, two-sided Dunn’s multiple comparisons test.

Extended Data Fig. 7 Comparison of Atg8 family proteins.

a, Sequence alignment of Atg8 from Saccharomyces cerevisiae, LC3B from homo sapiens, GABARAP from homo sapiens, LGG–1, LGG–2 from Caenorhabditis elegans is performed by CLASTALW server. Residue number of Atg8 is denoted above sequence. Residues corresponding to Phe77 and Phe79 in Atg8 are colored in magenta or orange and are shown as stick in the crystal structures in the same orientation. Each structure (Atg8, PDB: 2ZPN; LC3B, PDB: 3VTU; GABARAP, PDB: 1GNU; LGG-1, PDB: 5AZF; LGG-2, PDB: 5E6N) is shown as ribbon model colored from blue to red from the N- to the C-terminus, prepared by CCP4MG software. b, Membrane deformation of GUVs with a prolate shape upon lipidation of Atg8 mutants. F79L, F79Y and F79W mutants of Atg8 were analyzed in the same manner as Fig. 1. Experiments were repeated independently 3 times with similar results. Scale bar, 10 μm. Source data for graphs are available online.

Source data

Supplementary information

Source data

Source Data Fig. 1

Graph source data.

Source Data Fig. 2

Graph source data.

Source Data Fig. 3

Graph source data.

Source Data Fig. 4

Graph source data.

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 5

Graph source data.

Source Data Fig. 5

Unprocessed western blots.

Source Data Fig. 6

Graph source data.

Source Data Fig. 6

Unprocessed western blots.

Source Data Extended Data Fig. 1

Graph source data.

Source Data Extended Data Fig. 2

Graph source data.

Source Data Extended Data Fig. 4

Graph source data.

Source Data Extended Data Fig. 5

Graph source data.

Source Data Extended Data Fig. 7

Graph source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruyama, T., Alam, J.M., Fukuda, T. et al. Membrane perturbation by lipidated Atg8 underlies autophagosome biogenesis. Nat Struct Mol Biol 28, 583–593 (2021). https://doi.org/10.1038/s41594-021-00614-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00614-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing