Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complete set of the Atg8–E1–E2–E3 conjugation machinery forms an interaction web that mediates membrane shaping

Abstract

Atg8, a ubiquitin-like protein, is conjugated with phosphatidylethanolamine (PE) via Atg7 (E1), Atg3 (E2) and Atg12–Atg5–Atg16 (E3) enzymatic cascade and mediates autophagy. However, its molecular roles in autophagosome formation are still unclear. Here we show that Saccharomyces cerevisiae Atg8–PE and E1–E2–E3 enzymes together construct a stable, mobile membrane scaffold. The complete scaffold formation induces an in-bud in prolate-shaped giant liposomes, transforming their morphology into one reminiscent of isolation membranes before sealing. In addition to their enzymatic roles in Atg8 lipidation, all three proteins contribute nonenzymatically to membrane scaffolding and shaping. Nuclear magnetic resonance analyses revealed that Atg8, E1, E2 and E3 together form an interaction web through multivalent weak interactions, where the intrinsically disordered regions in Atg3 play a central role. These data suggest that all six Atg proteins in the Atg8 conjugation machinery control membrane shaping during autophagosome formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atg8 conjugation machinery possesses membrane invagination activity.
Fig. 2: Atg8–PE and E1, E2 and E3 enzymes assemble on the membrane.
Fig. 3: Coiled-coil domain in Atg16 mediates a scaffold formation.
Fig. 4: NTD in Atg7 homodimer mediates scaffold formation.
Fig. 5: FR and HR in Atg3 mediate scaffold formation.
Fig. 6: Membrane shaping by Atg8–PE and E1–E2–E3 conjugation machinery.

Similar content being viewed by others

Data availability

Microscopic data are deposited online at https://doi.org/10.6084/m9.figshare.24165963. NMR data are deposited online at https://doi.org/10.6084/m9.figshare.23939424. Source data are provided with this paper.

References

  1. Nakatogawa, H. Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Biol. 21, 439–458 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Noda, N. N. & Inagaki, F. Mechanisms of autophagy. Annu. Rev. Biophys. 44, 101–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Noda, N. N. Atg2 and Atg9: intermembrane and interleaflet lipid transporters driving autophagy. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1866, 158956 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Matoba, K. et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27, 1185–1193 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Osawa, T. et al. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 26, 281–288 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Maeda, S. et al. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat. Struct. Mol. Biol. 27, 1194–1201 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maeda, S., Otomo, C. & Otomo, T. The autophagic membrane tether ATG2A transfers lipids between membranes. eLife 8, e45777 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Valverde, D. P. et al. ATG2 transports lipids to promote autophagosome biogenesis. J. Cell Biol. 218, 1787–1798 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghanbarpour, A., Valverde, D. P., Melia, T. J. & Reinisch, K. M. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. Proc. Natl Acad. Sci. USA 118, e2101562118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Noda, N. N., Ohsumi, Y. & Inagaki, F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 584, 1379–1385 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Kirkin, V. & Rogov, V. V. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway. Mol. Cell 76, 268–285 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Birgisdottir, A. B., Lamark, T. & Johansen, T. The LIR motif—crucial for selective autophagy. J. Cell Sci. 126, 3237–3247 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Maruyama, T. et al. Membrane perturbation by lipidated Atg8 underlies autophagosome biogenesis. Nat. Struct. Mol. Biol. 28, 583–593 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165–178 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Xie, Z., Nair, U. & Klionsky, D. J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19, 3290–3298 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weidberg, H. et al. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell 20, 444–454 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Knorr, R. L. et al. Membrane morphology is actively transformed by covalent binding of the protein Atg8 to PE-lipids. PLoS ONE 9, e115357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kaufmann, A., Beier, V., Franquelim, H. G. & Wollert, T. Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell 156, 469–481 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Harada, K. et al. Two distinct mechanisms target the autophagy-related E3 complex to the pre-autophagosomal structure. eLife 8, e43088 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fujioka, Y. et al. Phase separation organizes the site of autophagosome formation. Nature 578, 301–305 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Noda, N. N. et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13, 1211–1218 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Matsushita, M. et al. Structure of Atg5.Atg16, a complex essential for autophagy. J. Biol. Chem. 282, 6763–6772 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Popelka, H. et al. Membrane binding and homodimerization of Atg16 via two distinct protein regions is essential for autophagy in yeast. J. Mol. Biol. 433, 166809 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujioka, Y., Noda, N. N., Nakatogawa, H., Ohsumi, Y. & Inagaki, F. Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J. Biol. Chem. 285, 1508–1515 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Noda, N. N. et al. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell 44, 462–475 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Taherbhoy, A. M. et al. Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol. Cell 44, 451–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hong, S. B. et al. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat. Struct. Mol. Biol. 18, 1323–1330 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Yamaguchi, M. et al. Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat. Struct. Mol. Biol. 19, 1250–1256 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Kaiser, S. E. et al. Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat. Struct. Mol. Biol. 19, 1242–1249 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamada, Y. et al. The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J. Biol. Chem. 282, 8036–8043 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Yamaguchi, M. et al. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J. Biol. Chem. 285, 29599–29607 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qiu, Y., Hofmann, K., Coats, J. E., Schulman, B. A. & Kaiser, S. E. Binding to E1 and E3 is mutually exclusive for the human autophagy E2 Atg3. Protein Sci. 22, 1691–1697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Metlagel, Z., Otomo, C., Takaesu, G. & Otomo, T. Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proc. Natl Acad. Sci. USA 110, 18844–18849 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sakoh-Nakatogawa, M., Kirisako, H., Nakatogawa, H. & Ohsumi, Y. Localization of Atg3 to autophagy-related membranes and its enhancement by the Atg8-family interacting motif to promote expansion of the membranes. FEBS Lett. 589, 744–749 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Ngu, M., Hirata, E. & Suzuki, K. Visualization of Atg3 during autophagosome formation in Saccharomyces cerevisiae. J. Biol. Chem. 290, 8146–8153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kirisako, T. et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol. 147, 435–446 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mizushima, N. et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol. 152, 657–668 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suzuki, K., Akioka, M., Kondo-Kakuta, C., Yamamoto, H. & Ohsumi, Y. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. 126, 2534–2544 (2013).

    CAS  PubMed  Google Scholar 

  39. Matoba, K. & Noda, N. N. Structural catalog of core Atg proteins opens new era of autophagy research. J. Biochem. 169, 517–525 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Schulman, B. A. & Harper, J. W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10, 319–331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Toma-Fukai, S. & Shimizu, T. Structural diversity of ubiquitin E3 ligase. Molecules 26, 6682 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hamasaki, M., Noda, T. & Ohsumi, Y. The early secretory pathway contributes to autophagy in yeast. Cell Struct. Funct. 28, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Nakatogawa, H. & Ohsumi, Y. SDS–PAGE techniques to study ubiquitin-like conjugation systems in yeast autophagy. Methods Mol. Biol. 832, 519–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Nakatogawa, H., Ishii, J., Asai, E. & Ohsumi, Y. Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy 8, 177–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Ishii for assistance with protein preparation. This work was supported in part by JSPS KAKENHI grant nos. JP19H05707 (to N.N.N.), JP21K15045 (to T.M.), JP19K16344 (to D.N.), JP19H05708 (to H.N.), JP19K16071 and JP22K06123 (to T.K.), CREST, Japan Science and Technology Agency grant nos. JPMJCR13M7 (to N.N.N. and H.N.) and JPMJCR20E3 (to N.N.N.), AMED-CREST, Japan Agency for Medical Research and Development grant no. JP21gm1410004s0102 (to H.N.) and grants from the Takeda Science Foundation (to N.N.N., T.M. and D.N.), and from the Tokyo Biochemical Research foundation (to N.N.N. and J.M.A.).

Author information

Authors and Affiliations

Authors

Contributions

J.M.A., T.M. and N.N.N. designed the research. J.M.A. and T.M. performed GUV experiments. D.N. performed HS-AFM experiments. T.M. performed NMR experiments. C.K., T.K. and H.N. performed budding yeast experiments. J.M.A., T.M., D.N., T.K., H.N. and N.N.N. analyzed data. T.M. and N.N.N. wrote the paper with the inputs from all the authors. N.N.N. supervised the work.

Corresponding author

Correspondence to Nobuo N. Noda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Helen Walden and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Katarzyna Ciazynska, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Non-enzymatic effect of conjugation machinery on Atg8-conjugated membrane morphology.

Atg7 (a), Atg3 (b), Atg12–Atg5–Atg16 (c), Atg7 and Atg3 (d), and Atg7 and Atg12–Atg5–Atg16 (e) are applied to Atg8R117C chemically conjugated to PE MCC lipid in a prolate GUV. In (b) and (d), a prolate GUV is tattered by the additions of Atg3 or Atg7 and Atg3, respectively. Experiments were repeated independently five times or more with similar results. DIC, differential interference contrast. Scale bars, 10 μm.

Extended Data Fig. 2 Estimation of area density of Atg8–PE on GUV.

NBD-DOPE in LUV and Alexa Fluor 488-Atg8 in bulk are used for the calibration in fluorescence sensitivity. NBD-DOPE is supposed to be incorporated into GUV stoichiometrically. For area density measurement of Atg8–PE on GUV, Alexa Fluor 488-Atg8 (5.0 μM), Atg7 (2.5 μM), Atg3 (2.5 μM) and Atg12–Atg5–Atg16 (1.25 μM) are introduced to the vicinity of GUV in the presence of MgATP via micropipette. Lipid composition is POPC:POPE:PI:Liss Rhod PE = 59:30:10:1 (mol%). The areal fraction of Atg8–PE at a plateau is estimated to be 6.2% from the fluorescence, corresponding to one Atg8–PE molecule per 161 nm2. Experiments were repeated independently three times with similar results. Scale bar, 10 μm.

Source data

Extended Data Fig. 3 NMR analyses of Atg7C, Atg3FR and Atg3HR.

a, 1H-15N HSQC spectral changes of [u-15N]-Atg7C with the titration of Atg8 (left), Atg12–Atg5–Atg16N (middle) and Atg7NTD (right). b, 1H-15N HSQC spectral changes of [u-15N]-Atg3FR with the titration of Atg8 (left), Atg12–Atg5–Atg16N (middle) and Atg7NTD (right). c, 1H-15N HSQC spectral changes of [u-15N]-Atg3HR with the titration of Atg8 (left), Atg12–Atg5–Atg16N (right). Insets show amide signal derived from the side chain in Trp. The protein ratios in the titrations are indicated in each panel, respectively.

Extended Data Fig. 4 Mutational analyses on Atg7 and Atg16.

a, Membrane-bound model of Atg16 predicted by the PPM server38 using the monomeric AlphaFold2 structure of Atg16. Ala mutations denoted as mut 1 and mut 2 were introduced into membrane-facing residues. b, c, Yeast cells were grown to mid-log phase, treated with rapamycin for 4 h, and examined for autophagic activity and the production of Atg8–PE by immunoblotting using anti-myc, anti-GFP, anti-Ape1, anti-Atg8, and anti-HA antibodies. The production of Atg8–PE was examined by urea-SDS-PAGE and immunoblotting. mApe1, mature Ape1; prApe1, Ape1 proform; GFP’, GFP fragment generated by vacuolar degradation of Pgk1-GFP. Experiments were repeated independently twice with similar results. b, Atg16 mutants or truncates at the coiled-coil that showed defects in autophagy activity (Pgk1-GFP procession and Ape1 maturation) also showed defects in Atg8-PE formation. c, The role of Atg7NTD in autophagy activity besides Atg8-PE formation could not be studied since Atg7CTD alone failed to form Atg8-PE even under overexpressing conditions. d, Localization analyses of Atg proteins after lipidation reaction using Atg16 mutants. Data are mean with plots for n = 5 (Atg16D101A E102A), 4 (Atg16mut 1) and 7 (Atg16mut 1+mut 2) GUVs.

Source data

Supplementary information

Reporting Summary

Peer Review File

Supplementary Video 1

Shape changes of prolate GUV along with Atg8–PE conjugation reaction. This video was used to generate the images shown in Fig. 1b.

Supplementary Video 2

Another example of shape changes of prolate GUV along with Atg8–PE conjugation reaction.

Supplementary Video 3

HS-AFM observation of the Atg8 conjugation machinery shown in Fig. 4d. Scale bar, 100 nm. Height scale, 0–17 nm.

Supplementary Video 4

HS-AFM observation of the Atg8 conjugation machinery on lipid bilayers shown in Fig. 4e. Scale bar, 30 nm. Height scale, 0–8 nm.

Supplementary Video 5

HS-AFM observation of the glutaraldehyde-treated Atg8 conjugation machinery on lipid bilayers shown in Fig. 4f, left. Scale bar, 50 nm.

Supplementary Video 6

HS-AFM observation of the glutaraldehyde-treated Atg8 conjugation machinery on lipid bilayers shown in Fig. 4f, right. Scale bar, 50 nm.

Source data

Source Data Fig. 2

Graph source data.

Source Data Fig. 3

Graph source data.

Source Data Fig. 4

Graph source data.

Source Data Fig. 5

Graph source data.

Source Data Fig. 6

Graph source data.

Source Data Extended Data Fig. 2

Graph source data.

Source Data Extended Data Fig. 4

Graph source data.

Source Data Extended Data Fig. 4

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, J.M., Maruyama, T., Noshiro, D. et al. Complete set of the Atg8–E1–E2–E3 conjugation machinery forms an interaction web that mediates membrane shaping. Nat Struct Mol Biol 31, 170–178 (2024). https://doi.org/10.1038/s41594-023-01132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01132-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing