Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteomic and transcriptomic profiling of brainstem, cerebellum and olfactory tissues in early- and late-phase COVID-19

Abstract

Neurological symptoms, including cognitive impairment and fatigue, can occur in both the acute infection phase of coronavirus disease 2019 (COVID-19) and at later stages, yet the mechanisms that contribute to this remain unclear. Here we profiled single-nucleus transcriptomes and proteomes of brainstem tissue from deceased individuals at various stages of COVID-19. We detected an inflammatory type I interferon response in acute COVID-19 cases, which resolves in the late disease phase. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation, one neuronal with a direct focus on cranial nerve nuclei and a separate diffuse pattern affecting the whole brainstem. The latter reflects a bystander effect of the respiratory infection that spreads throughout the vascular unit and alters the transcriptional state of mainly oligodendrocytes, microglia and astrocytes, while alterations of the brainstem nuclei could reflect the connection of the immune system and the central nervous system via, for example, the vagus nerve. Our results indicate that even without persistence of severe acute respiratory syndrome coronavirus 2 in the central nervous system, local immune reactions are prevailing, potentially causing functional disturbances that contribute to neurological complications of COVID-19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proteomic landscape and evaluation of COVID-19-enriched pathways.
Fig. 2: Differential regulation of IFN response in the brainstem.
Fig. 3: Deregulation of proteins and genes involved in synaptic processes during COVID-19.
Fig. 4: Perivascular unit in the brainstem shows inflammatory changes during COVID-19 disease course.
Fig. 5: Study design and multiomics approach.

Similar content being viewed by others

Data availability

The snRNA-seq data generated in this study have been deposited in the European Genome–Phenome Archive under the accession number EGAS00001006442. The data are available under controlled access due to the sensitive nature of sequencing data, and access can be obtained by contacting the appropriate data access committee listed for each dataset in the study. Access will be granted to commercial and non-commercial parties according to patient consent forms and data transfer agreements. We have an institutional process in place to deal with requests for data transfer. A response to requests for data access can be expected within 14 days. After access has been granted, the data is available for 2 years. The processed proteomic and clinical data are available in Supplementary Tables 1 and 8. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE132 partner repository with the dataset identifier PXD038693. Raw image files of histological stainings, immunohistochemistry, multi-epitope ligand cartography and spatial transcriptomics generated in this study have been deposited publicly at Zenodo28. The remaining data are available within the article, extended data files or supplementary tables.

Code availability

No custom software codes were used.

References

  1. Mao, L. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77, 683–690 (2020).

    Article  PubMed  Google Scholar 

  2. Schweitzer, F. et al. Neuro-COVID-19 is more than anosmia: clinical presentation, neurodiagnostics, therapies, and prognosis. Curr. Opin. Neurol. 34, 423–431 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Romero-Sanchez, C. M. et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology 95, e1060–e1070 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lou, J. J. et al. Neuropathology of COVID-19 (neuro-COVID): clinicopathological update. Free Neuropathol. https://doi.org/10.17879/freeneuropathology-2021-2993 (2021).

  5. Berlit, P. et al. Neurological manifestations of COVID-19—guideline of the German Society of Neurology. Neurol. Res. Pr. 2, 51 (2020).

    Article  Google Scholar 

  6. Paterson, R. W. et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain 143, 3104–3120 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  7. Aschman, T., Mothes, R., Heppner, F. L. & Radbruch, H. What SARS-CoV-2 does to our brains. Immunity 55, 1159–1172 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Krasemann, S. et al. Assessing and improving the validity of COVID-19 autopsy studies—a multicentre approach to establish essential standards for immunohistochemical and ultrastructural analyses. EBioMedicine 83, 104193 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Thakur, K. T. et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 144, 2696–2708 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  13. Soung, A. L. et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain 145, 4193–4201 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  14. Gelpi, E. et al. Multifactorial white matter damage in the acute phase and pre-existing conditions may drive cognitive dysfunction after SARS-CoV-2 infection: neuropathology-based evidence. Viruses 15, 908 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  15. Reinhold, D. et al. The brain reacting to COVID-19: analysis of the cerebrospinal fluid proteome, RNA and inflammation. J. Neuroinflammation 20, 30 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Deigendesch, N. et al. Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology. Acta Neuropathol. 140, 583–586 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Meinhardt, J. et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 24, 168–175 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Matschke, J. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 19, 919–929 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Schwabenland, M. et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia–T-cell interactions. Immunity 54, 1594–1610 (2021).

  20. Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182, 1419–1440 (2020).

  21. Mothes, R. et al. Distinct tissue niches direct lung immunopathology via CCL18 and CCL21 in severe COVID-19. Nat. Commun. 14, 791 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Witkowski, M. et al. Untimely TGF beta responses in COVID-19 limit antiviral functions of NK cells. Nature 600, 295–301 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Diao, B. et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol. 11, 827 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ramlall, V. et al. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nat. Med. 26, 1609–1615 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Heming, M. et al. Neurological manifestations of COVID-19 feature T cell exhaustion and dedifferentiated monocytes in cerebrospinal fluid. Immunity 54, 164–175 (2021).

  26. Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kaniusas, E. et al. Non-invasive auricular vagus nerve stimulation as a potential treatment for COVID-19-originated acute respiratory distress syndrome. Front. Physiol. 11, 890 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  28. Radke, J. et al. The central nervous system’s proteogenomic and spatial imprint upon systemic viral infection, like SARS-CoV-2 [Data set]. Zenodo https://doi.org/10.5281/zenodo.7381807 (2022).

  29. Pepper, D. J. et al. Procalcitonin-guided antibiotic discontinuation and mortality in critically Ill adults: a systematic review and meta-analysis. Chest 155, 1109–1118 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  30. Tong-Minh, K. et al. High procalcitonin levels associated with increased intensive care unit admission and mortality in patients with a COVID-19 infection in the emergency department. BMC Infect. Dis. 22, 165 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rusinova, I. et al. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res. 41, D1040–D1046 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 3 (2004).

  33. Xydakis, M. S. et al. Post-viral effects of COVID-19 in the olfactory system and their implications. Lancet Neurol. 20, 753–761 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kespohl, M. et al. Protein modification with ISG15 blocks coxsackievirus pathology by antiviral and metabolic reprogramming. Sci. Adv. 6, eaay1109 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Haller, O. & Kochs, G. Mx genes: host determinants controlling influenza virus infection and trans-species transmission. Hum. Genet 139, 695–705 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Piri, R. et al. Prevalence of respiratory viruses and antiviral MxA responses in children with febrile urinary tract infection. Eur. J. Clin. Microbiol Infect. Dis. 39, 1239–1244 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sooryanarain, H. et al. ISG15 modulates type I interferon signaling and the antiviral response during hepatitis E virus replication. J. Virol. 91, e00621-17 (2017).

  38. Kim, H. et al. Development of a validated interferon score using nanostring technology. J. Interferon Cytokine Res. 38, 171–185 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234 (2019).

  40. Johnson, K. R., Nicodemus-Johnson, J., Carnegie, G. K. & Danziger, R. S. Molecular evolution of A-kinase anchoring protein (AKAP)-7: implications in comparative PKA compartmentalization. BMC Evol. Biol. 12, 125 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Jones, B. W. et al. Targeted deletion of AKAP7 in dentate granule cells impairs spatial discrimination. eLife 5, e20695 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  42. Jockusch, W. J. et al. CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins. Cell 131, 796–808 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Pavinato, L. et al. CAPRIN1 haploinsufficiency causes a neurodevelopmental disorder with language impairment, ADHD and ASD. Brain 146, 534–548 (2023).

    Article  PubMed  Google Scholar 

  44. Brendel, A., Renziehausen, J., Behl, C. & Hajieva, P. Downregulation of PMCA2 increases the vulnerability of midbrain neurons to mitochondrial complex I inhibition. Neurotoxicology 40, 43–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Maximova, O. A. et al. Virus infection of the CNS disrupts the immune–neural–synaptic axis via induction of pleiotropic gene regulation of host responses. eLife 10, e62273 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lee, J. S. & Shin, E. C. The type I interferon response in COVID-19: implications for treatment. Nat. Rev. Immunol. 20, 585–586 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Galbraith, M. D. et al. Specialized interferon action in COVID-19. Proc. Natl Acad. Sci. USA 119, e2116730119 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Gofton, T. E. & Young, G. B. Sepsis-associated encephalopathy. Nat. Rev. Neurol. 8, 557–566 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Shatz, C. J. MHC class I: an unexpected role in neuronal plasticity. Neuron 64, 40–45 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. DeDiego, M. L., Martinez-Sobrido, L. & Topham, D. J. Novel functions of IFI44L as a feedback regulator of host antiviral responses. J. Virol. 93, e01159–19 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. DeDiego, M. L., Nogales, A., Martinez-Sobrido, L. & Topham, D. J. Interferon-induced protein 44 interacts with cellular FK506-binding protein 5, negatively regulates host antiviral responses, and supports virus replication. mBio 10, e01839–19 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Paolicelli, R. C. et al. Microglia states and nomenclature: a field at its crossroads. Neuron 110, 3458–3483 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Wolf, Y., Yona, S., Kim, K. W. & Jung, S. Microglia, seen from the CX3CR1 angle. Front. Cell Neurosci. 7, 26 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Sankowski, R. et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat. Neurosci. 22, 2098–2110 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Brose, N., Petrenko, A. G., Sudhof, T. C. & Jahn, R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 1021–1025 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Cupertino, R. B. et al. SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. J. Neural Transm. 123, 867–883 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Barry, G. et al. The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states. Sci. Rep. 7, 40127 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Luo, F., Sclip, A., Merrill, S. & Sudhof, T. C. Neurexins regulate presynaptic GABAB-receptors at central synapses. Nat. Commun. 12, 2380 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Andreyeva, A. et al. CHL1 is a selective organizer of the presynaptic machinery chaperoning the SNARE complex. PLoS ONE 5, e12018 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  60. Krasemann, S. et al. The blood–brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Rep. 17, 307–320 (2022).

    Article  CAS  Google Scholar 

  61. Bonetto, V. et al. Markers of blood–brain barrier disruption increase early and persistently in COVID-19 patients with neurological manifestations. Front. Immunol. 13, 1070379 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7, 803–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Lastres, P. et al. Endoglin modulates cellular responses to TGF-β 1. J. Cell Biol. 133, 1109–1121 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Ihn, H. Pathogenesis of fibrosis: role of TGF-β and CTGF. Curr. Opin. Rheumatol. 14, 681–685 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, Z. et al. Connective tissue growth factor: from molecular understandings to drug discovery. Front. Cell Dev. Biol. 8, 593269 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  66. Lu, M., Yan, X. F., Si, Y. & Chen, X. Z. CTGF triggers rat astrocyte activation and astrocyte-mediated inflammatory response in culture conditions. Inflammation 42, 1693–1704 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Smolders, J. et al. Tissue-resident memory T cells populate the human brain. Nat. Commun. 9, 4593 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  68. Ferreira-Gomes, M. et al. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself. Nat. Commun. 12, 1961 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Mothes, R. et al. Distinct tissue niches direct lung immunopathology via CCL18 and CCL21 in severe COVID-19. Nat. Commun. 14, 791 (2023).

  70. Clenet, M. L., Gagnon, F., Moratalla, A. C., Viel, E. C. & Arbour, N. Peripheral human CD4+CD8+ T lymphocytes exhibit a memory phenotype and enhanced responses to IL-2, IL-7 and IL-15. Sci. Rep. 7, 11612 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  71. Fernandez-Castaneda, A. et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 185, 2452–2468 (2022).

  72. Girard, T. D., Dittus, R. S. & Ely, E. W. Critical illness brain injury. Annu. Rev. Med. 67, 497–513 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Zrzavy, T. et al. Pro-inflammatory activation of microglia in the brain of patients with sepsis. Neuropathol. Appl. Neurobiol. 45, 278–290 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Fullard, J. F. et al. Single-nucleus transcriptome analysis of human brain immune response in patients with severe COVID-19. Genome Med. 13, 118 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Mavrikaki, M., Lee, J. D., Solomon, I. H. & Slack, F. J. Severe COVID-19 is associated with molecular signatures of aging in the human brain. Nat. Aging 2, 1130–1137 (2022).

    Article  PubMed  Google Scholar 

  76. Jakel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Golan, N. et al. Identification of Tmem10/Opalin as an oligodendrocyte enriched gene using expression profiling combined with genetic cell ablation. Glia 56, 1176–1186 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  78. Roy, E. R. et al. Concerted type I interferon signaling in microglia and neural cells promotes memory impairment associated with amyloid beta plaques. Immunity 55, 879–894 (2022).

  79. Rybak-Wolf, A. et al. Modelling viral encephalitis caused by herpes simplex virus 1 infection in cerebral organoids. Nat. Microbiol. 8, 1252–1266 (2023).

  80. Schimmel, L. et al. Endothelial cells are not productively infected by SARS-CoV-2. Clin. Transl. Immunol. 10, e1350 (2021).

    Article  CAS  Google Scholar 

  81. McCracken, I. R. et al. Lack of evidence of angiotensin-converting enzyme 2 expression and replicative infection by SARS-CoV-2 in human endothelial cells. Circulation 143, 865–868 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Baeck, M., Hoton, D., Marot, L. & Herman, A. Chilblains and COVID-19: why SARS-CoV-2 endothelial infection is questioned. Br. J. Dermatol 183, 1152–1153 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Wenzel, J. et al. The SARS-CoV-2 main protease M(pro) causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat. Neurosci. 24, 1522–1533 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Napolitano, G. et al. Transforming growth factor-β1 down-regulation of major histocompatibility complex class I in thyrocytes: coordinate regulation of two separate elements by thyroid-specific as well as ubiquitous transcription factors. Mol. Endocrinol. 14, 486–505 (2000).

    CAS  PubMed  Google Scholar 

  86. Lo, M. W., Kemper, C. & Woodruff, T. M. COVID-19: complement, coagulation, and collateral damage. J. Immunol. 205, 1488–1495 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Kaya, T. et al. CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat. Neurosci. 25, 1446–1457 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Goehler, L. E. et al. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton. Neurosci. 85, 49–59 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Caravaca, A. S. et al. Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit. Proc. Natl Acad. Sci. USA 119, e2023285119 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Woo, M. S. et al. Vagus nerve inflammation contributes to dysautonomia in COVID-19. Acta Neuropathol. 146, 387–394 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Al-Dalahmah, O. et al. Neuronophagia and microglial nodules in a SARS-CoV-2 patient with cerebellar hemorrhage. Acta Neuropathol. Commun. 8, 147 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Marino Gammazza, A. et al. Molecular mimicry in the post-COVID-19 signs and symptoms of neurovegetative disorders? Lancet Microbe 2, e94 (2021).

    Article  PubMed  Google Scholar 

  94. Velmeshev, D. et al. Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364, 685–689 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Shaban, A. & Leira, E. C. Neurological complications in patients with systemic lupus erythematosus. Curr. Neurol. Neurosci. Rep. 19, 97 (2019).

    Article  PubMed  Google Scholar 

  96. Hofer, M. J. & Campbell, I. L. Type I interferon in neurological disease-the devil from within. Cytokine Growth Factor Rev. 24, 257–267 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Giordano, A. M. S. et al. DNA damage contributes to neurotoxic inflammation in Aicardi–Goutieres syndrome astrocytes. J. Exp. Med. 219, e20211121 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Akwa, Y. et al. Transgenic expression of IFN-α in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration. J. Immunol. 161, 5016–5026 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Barrett, J. P. et al. Interferon-β plays a detrimental role in experimental traumatic brain injury by enhancing neuroinflammation that drives chronic neurodegeneration. J. Neurosci. 40, 2357–2370 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Deczkowska, A. et al. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat. Commun. 8, 717 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  101. Muccioli, L. et al. Intravenous immunoglobulin therapy in COVID-19-related encephalopathy. J. Neurol. 268, 2671–2675 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Huo, S. et al. Intravenous immunoglobulins for treatment of severe COVID-19-related acute encephalopathy. J. Neurol. 269, 4013–4020 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Park-Min, K. H. et al. FcgammaRIII-dependent inhibition of interferon-γ responses mediates suppressive effects of intravenous immune globulin. Immunity 26, 67–78 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  105. Rice, G. I. et al. Assessment of type I interferon signaling in pediatric inflammatory disease. J. Clin. Immunol. 37, 123–132 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Gassen, N. C. et al. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat. Commun. 12, 3818 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Tosti, L. et al. Single-nucleus and in situ RNA-sequencing reveal cell topographies in the human pancreas. Gastroenterology 160, 1330–1344 (2021).

  108. Brann, D. H. et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 6, eabc5801 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Durante, M. A. et al. Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nat. Neurosci. 23, 323–326 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Khrameeva, E. et al. Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. Genome Res. 30, 776–789 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Chua, R. L. et al. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 38, 970–979 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. monocle3. GitHub https://github.com/cole-trapnell-lab/monocle3 (2022).

  114. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

  116. Muller, T. et al. Automated sample preparation with SP3 for low-input clinical proteomics. Mol. Syst. Biol. 16, e9111 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  117. Scheltema, R. A. et al. The Q Exactive HF, a benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer. Mol. Cell Proteomics 13, 3698–3708 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Reubsaet, L., Sweredoski, M. J. & Moradian, A. Data-independent acquisition for the Orbitrap Q Exactive HF: a tutorial. J. Proteome Res 18, 803–813 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Doellinger, J., Blumenscheit, C., Schneider, A. & Lasch, P. Increasing proteome depth while maintaining quantitative precision in short-gradient data-independent acquisition proteomics. J. Proteome. Res. 22, 2131–2140 (2023).

  120. Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Jeong, K., Kim, S. & Bandeira, N. False discovery rates in spectral identification. BMC Bioinform. 13, S2 (2012).

    Article  CAS  Google Scholar 

  122. Dorl, S., Winkler, S., Mechtler, K. & Dorfer, V. MS Ana: improving sensitivity in peptide identification with spectral library search. J. Proteome Res. 22, 462–470 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Savitski, M. M., Wilhelm, M., Hahne, H., Kuster, B. & Bantscheff, M. A scalable approach for protein false discovery rate estimation in large proteomic data sets. Mol. Cell Proteomics 14, 2394–2404 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Josse, J. & Husson, F. missMDA: a package for handling missing values in multivariate data analysis. J. Stat. Softw. 70, 1–31 (2016).

    Article  Google Scholar 

  125. Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A. & Vingron, M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18, S96–S104 (2002).

    Article  PubMed  Google Scholar 

  126. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteomics 13, 2513–2526 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Pham, T. V., Henneman, A. A. & Jimenez, C. R. iq: an R package to estimate relative protein abundances from ion quantification in DIA-MS-based proteomics. Bioinformatics 36, 2611–2613 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article  Google Scholar 

  129. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

  130. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Wendisch, D. et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 184, 6243–6261 (2021).

  132. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully thank F. Egelhofer, R. Koll, P. Matylewski, V. Wolf and S. Meier for excellent technical assistance and advice. The authors are most grateful to the individuals with COVID-19 and their relatives for consenting to autopsy and subsequent research, which were facilitated by the Biobank of the Department of Neuropathology, Charité–Universitätsmedizin Berlin and the German National Autopsy Network (NATON–01KX2121). Cartoon images were partially created with Biorender.com. This work was also supported by the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy EXC-2049-390688087, as well as SFB TRR 167 and HE 3130/6-1 to F.L.H., CRC130 P17 to H.R. and A.E.H., HA 5354/10-1 to A.E.H. and RA 2491/1-1 to H.R.; by the German Center for Neurodegenerative Diseases Berlin, by the European Union (PHAGO, 115976; Innovative Medicines Initiative-2; FP7-PEOPLE-2012-ITN: NeuroKine) and by the Ministry for Science and Education of Lower Saxony through the program ‘Niedersächsisches Vorab’ to J.F. E.W. and M.L. who are supported by the project ‘Virological and immunological determinants of COVID-19 pathogenesis—lessons to get prepared for future pandemics (KA1-Co-02 ‘COVIPA’)’. We would like to thank the Sequencing Facility at the Max Planck Institute for Molecular Genetics for their services.

Author information

Authors and Affiliations

Authors

Contributions

J.R., J. Meinhardt, T.A., R.L.C., V.F, F.L.H., M.M., C.C. and H.R. conceived the project. J.R., J. Meinhardt, T.A., R.L.C., V.F., C.B., J.F., C.T., E.W., V.C., M.M., C.C., H.R., E.F., E.K., R.M., P.K. and C.F.-Z. performed experiments and analyzed data. S.L., F.W.T., N.I., R.L.C., V.F. and M.M. carried out bioinformatics analyses and processed data. S.Streit, R.v.M., J.F., C.T., C.S., A.O., J.I., S.E., W.S., L.K., V.H. and J.J. performed sample acquisition and/or histological analyses. V.H.H., S. Schneeberger, E.S., S.V., D.R., A.E.H., P.E., M.A.M., N.C.G., F.K., J. Melchert., K.J., B.T., M.L. and D.H. performed experiments. M.R., R.E. and C.C. oversaw sequencing of the samples. J.R., J. Meinhardt, T.A., R.L.C., V.F., H.R., E.F., F.L.H. and K.P. prepared figures and wrote the manuscript. J.R., F.L.H., M.M., C.C. and H.R. critically revised the manuscript. All authors critically read, reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Josefine Radke or Helena Radbruch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Robyn Klein, Christopher Mason and Avindra Nath for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Post hoc PCA analysis based on proteomics data of the brainstem.

Post hoc PCA score plots based on (dys-)regulated proteins detected in contrast 1 (acute COVID-19 vs. control, a, b) and detected in contrast 2 (late COVID-19 vs. control, c, d). Score plots on the left show sample clustering in the first two principal components. Ellipses are drawn on the confidence level of 0.8 to underline sample grouping. Criteria used for finding (dys-)regulated proteins are described in the Supplementary Material and Methods section. Post hoc PCA loading plots on the right based on (dys-)regulated proteins detected in the respective contrast show correlation of proteins and different clinical factors with the first two PCs. The features (green arrows) contributing the most to the first two principal components (for example, S100A11, TNS3) are shown and the clinical factors (blue dashed arrows).

Extended Data Fig. 2 Interferon related alterations (PCR, snRNA Seq).

Interferon score determined by qPCR of six ISGs (IFIT1, IFI27, IFI44L, ISG15, RSAD2, SIGLEC1) as previously described38,105 in biologically independent brainstem samples from n = 9 acute, n = 9 late, and n = 6 control cases. There were no statistically significant differences between group means as determined by one-way ANOVA (p = 0.34) (a). Gene expression of homeostatic microglia marker. Expression levels are color coded; the percentage of cells expressing the respective gene is size coded (b).Violin plot comparing the expression of IFN score in acute and late COVID-19 and in controls across all cell populations within the brainstem (c) and olfactory mucosa (d). Significance was calculated for IFN scores with a Mann-Whitney U test (two-sided) with the p-values adjustment with the Benjamini-Hochberg method. This is followed by a Wilcoxon effect size (two-sided) calculation for significant differences only. Significance was calculated using the Mann-Whitney U test, the p-values were corrected with FDR. Asterisks indicate level of statistical significance: ***p < 0.001, **p < 0.01, and *p < 0.05 (for the Wilcoxon effect size and the exact p-values, please refer to Supplementary Table 9) (e). Interferons and their receptor expression in all analyzed snRNA sequencing samples from the brainstem (n = 4 acute, n = 4 late, and n = 4 control cases) (c).

Extended Data Fig. 3 Synaptic alterations and cell frequencies.

Synaptic Ontology Analysis using SynGO39 based on differentially expressed proteins (DEPs) detected in contrast 1 (acute COVID-19 vs. control) and contrast 2 (late COVID-19 vs. control) showing alteration of synaptic processes in the brainstem. Reference sunburst diagrams for synaptic location (a) and synaptic function (b) gene ontologies (GOs) are shown on the left. GO terms representing major synaptic subcompartments (a) or synaptic functions (b) are positioned in the next level from the center. The sunburst plots illustrate that the synapse-associated DEPs were of pre- and postsynaptic origin (a) and mainly involved in biological processes associated with synapse organization and processes in the presynapse (b). The number of (dys-)regulated proteins in each term is indicated by the color scheme in the legend (FDR-adjusted p-value < 0.05; a, b). Bar graph with data points per sample showing the percentage of all cell types in the brainstem in acute (n = 4 individuals) and late (n = 4 individuals) COVID-19 and controls (n = 4 individuals) as detected by snRNA sequencing. Differences in cellular frequencies were calculated with scCODA, a Bayesian model that determines compositional changes in single-cell RNA-seq datasets (significant if FDR adjusted p-value < 0.1). (scCODA; FDR adjusted p-value < 0.1; c). The error bars depict the standard error mean (SEM), and each dot reflects the percentage of cells per sample.

Extended Data Fig. 4 SnRNA Seq UMAPs and SARS-CoV-2 transcripts.

UMAPs of snRNA sequencing of the brainstem (medulla oblongata; a-b) and olfactory mucosa (c-d). Sample overview (a, c) and detection of SARS-CoV-2 transcripts (b, d) are shown. Dot plot showing the expression of selected myelin- and neuronal/synapse-related proteins in cerebrospinal fluid (CSF) of living patients with COVID-19 (n = 38) with either high (C19high) or low (C19low) serum levels of procalcitonin (PCT) compared to non-inflammatory controls (CTRL, n = 28) as well as patients with herpes simplex virus meningitis (HSVM, n = 10; e).

Extended Data Fig. 5 Automated clustering of spatial sequencing.

Heat map of the top 5 most expressed genes per cluster of integrated spatial sequencing data from all sequenced samples. The color represents normalized and scaled (‘SCTtransform’, Seurat) gene expression (a). These unsupervised clusters are distributed similar to the supervised anatomical annotation shown in Fig. 3 with clusters of brainstem nuclei and white matter fiber tracts (b; left panel: acute (patient D10), right panel: late (patient D19)).

Extended Data Fig. 6 Subclustering and pseudotime analysis of oligodendrocytes (snRNA Seq).

The UMAPs show a refined subclustering of oligodendrocytes (left all, right disease groups) (a) and pseudotime analysis (b). The plotting symbol for each cell is colored according to its true pseudotime; trajectories in black. The transitional cell clusters Oligo.OPALIN + 2 and Oligo 1 are significantly reduced during acute COVID-19 (c, e). Marker expression of different oligodendrocyte cell clusters in acute (n = 4 individuals), late (n = 4 individuals), and control (n = 4 individuals) cases (d). Color and size codes are displayed. Differences in cellular frequencies were calculated with scCODA, a Bayesian model that determines compositional changes in single-cell RNA-seq datasets (significant if FDR adjusted p-value < 0.1). The central line depicts the median, boxes represent the interquartile range (IQR), and whiskers show the distribution excluding outliers. Outliers are points outside 1.5 times the IQR (e).

Extended Data Fig. 7 T cell comparison in lung, olfactory mucosa and brain (snRNA Seq).

Integrated UMAPs of natural killer cells (NK), CD4+ and CD8 + T cells within the brainstem, olfactory mucosa and lung in acute and late COVID-19 and controls in the single-cell RNA-seq datasets (a). The Venn diagram represents all unique and shared T cell related transcripts in the brainstem, olfactory mucosa and lung (b). Dot plot of snRNA sequencing activation (c) and cytotoxic markers (d) in CD8 + T cells in the brainstem. Expression levels are color coded; the percentage of cells expressing the respective gene is size coded (c, d). Integrated heatmap of cytotoxic and activation markers in T cells of lung, brainstem and mucosa (e).

Extended Data Fig. 8 Marker gene expression for cell type annotations (snRNA Seq).

Marker gene expression profiles are shown for brainstem (a) and olfactory mucosa (b). Color and size codes are displayed. Dotplots showing expression of endothelial cell type markers (c), macrophages and microglia (d) and neurons (e) in the brainstem samples.

Supplementary information

Supplementary Information

Supplementary material and methods.

Reporting Summary

Supplementary Table 1

Metadata of the autopsy and CSF cohort.

Supplementary Table 2

Interferome dataset (proteomics).

Supplementary Table 3

IFN score (qPCR).

Supplementary Table 4

Description of synaptic proteins.

Supplementary Table 5

Differential gene expression and cell counts (snRNA-seq).

Supplementary Table 6

Spatial sequencing and automated clustering.

Supplementary Table 7

Cell population_scCODA.

Supplementary Table 8

Differentially expressed proteins for all organs.

Supplementary Table 9

IFN score (snRNA-seq).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radke, J., Meinhardt, J., Aschman, T. et al. Proteomic and transcriptomic profiling of brainstem, cerebellum and olfactory tissues in early- and late-phase COVID-19. Nat Neurosci 27, 409–420 (2024). https://doi.org/10.1038/s41593-024-01573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-024-01573-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing