Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Updating the striatal–pallidal wiring diagram

Abstract

The striatal and pallidal complexes are basal ganglia structures that orchestrate learning and execution of flexible behavior. Models of how the basal ganglia subserve these functions have evolved considerably, and the advent of optogenetic and molecular tools has shed light on the heterogeneity of subcircuits within these pathways. However, a synthesis of how molecularly diverse neurons integrate into existing models of basal ganglia function is lacking. Here, we provide an overview of the neurochemical and molecular diversity of striatal and pallidal neurons and synthesize recent circuit connectivity studies in rodents that takes this diversity into account. We also highlight anatomical organizational principles that distinguish the dorsal and ventral basal ganglia pathways in rodents. Future work integrating the molecular and anatomical properties of striatal and pallidal subpopulations may resolve controversies regarding basal ganglia network function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basal ganglia pathways.
Fig. 2: Neural circuit diagram of the striatum.
Fig. 3: Dopamine asymmetrically modulates D1-SPNs and D2-SPNs.
Fig. 4: Neural circuit diagram of the GPe.
Fig. 5: Predicted effects of SPN balance on pallidal output.
Fig. 6: Neural circuit diagram of the VP.

Similar content being viewed by others

References

  1. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    CAS  Google Scholar 

  2. DeLong, M. R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990).

    CAS  Google Scholar 

  3. Alexander, G. E. & Crutcher, M. D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266–271 (1990).

    CAS  PubMed  Google Scholar 

  4. Mink, J. W. Basal ganglia mechanisms in action selection, plasticity, and dystonia. Eur. J. Paediatr. Neurol. 22, 225–229 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Eisinger, R. S., Cernera, S., Gittis, A., Gunduz, A. & Okun, M. S. A review of basal ganglia circuits and physiology: application to deep brain stimulation. Parkinsonism Relat. Disord. 59, 9–20 (2019).

    PubMed  PubMed Central  Google Scholar 

  6. Frank, M. J. Computational models of motivated action selection in corticostriatal circuits. Curr. Opin. Neurobiol. 21, 381–386 (2011).

    CAS  Google Scholar 

  7. Gerfen, C. R. & Surmeier, D. J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–466 (2011).

    CAS  PubMed Central  Google Scholar 

  8. Tepper, J. M. et al. Heterogeneity and diversity of striatal GABAergic interneurons: update 2018. Front. Neuroanat. 12, 91 (2018).

    CAS  PubMed Central  Google Scholar 

  9. Chen, R. et al. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nat. Neurosci. 24, 1757–1771 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gokce, O. et al. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-seq. Cell Rep. 16, 1126–1137 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kawaguchi, Y., Wilson, C. J. & Emson, P. C. Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J. Neurosci. 10, 3421–3438 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Calhoon, G. G. & O’Donnell, P. Closing the gate in the limbic striatum: prefrontal suppression of hippocampal and thalamic inputs. Neuron 78, 181–190 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sippy, T., Lapray, D., Crochet, S. & Petersen, C. C. H. Cell-type-specific sensorimotor processing in striatal projection neurons during goal-directed behavior. Neuron 88, 298–305 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Du, K. et al. Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proc. Natl Acad. Sci. USA 114, E7612–E7621 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Plotkin, J. L., Day, M. & Surmeier, D. J. Synaptically driven state transitions in distal dendrites of striatal spiny neurons. Nat. Neurosci. 14, 881–888 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Carter, A. G. & Sabatini, B. L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44, 483–493 (2004).

    CAS  PubMed  Google Scholar 

  17. Carter, A. G., Soler-Llavina, G. J. & Sabatini, B. L. Timing and location of synaptic inputs determine modes of subthreshold integration in striatal medium spiny neurons. J. Neurosci. 27, 8967–8977 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Prager, E. M. et al. Dopamine oppositely modulates state transitions in striosome and matrix direct pathway striatal spiny neurons. Neuron 108, 1091–1102 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pennartz, C. M., Groenewegen, H. J. & Lopes da Silva, F. H. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog. Neurobiol. 42, 719–761 (1994).

    CAS  Google Scholar 

  20. Hunnicutt B. J. et al. A comprehensive excitatory input map of the striatum reveals novel functional organization. eLife 5, e19103 (2016).

  21. Haber, S. N. Corticostriatal circuitry. Dialogues Clin. Neurosci. 18, 7–21 (2016).

    PubMed Central  Google Scholar 

  22. Peters, A. J., Fabre, J. M. J., Steinmetz, N. A., Harris, K. D. & Carandini, M. Striatal activity topographically reflects cortical activity. Nature 591, 420–425 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stefanik, M. T. et al. Optogenetic inhibition of cocaine seeking in rats. Addict. Biol. 18, 50–53 (2013).

    CAS  PubMed  Google Scholar 

  24. Hart, G., Bradfield, L. A., Fok, S. Y., Chieng, B. & Balleine, B. W. The bilateral prefronto-striatal pathway is necessary for learning new goal-directed actions. Curr. Biol. 28, 2218–2229 (2018).

    CAS  PubMed  Google Scholar 

  25. Pascoli, V. et al. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 509, 459–464 (2014).

    CAS  PubMed  Google Scholar 

  26. Matsumoto, N., Minamimoto, T., Graybiel, A. M. & Kimura, M. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J. Neurophysiol. 85, 960–976 (2001).

    CAS  PubMed  Google Scholar 

  27. Parker, P. R. L., Lalive, A. L. & Kreitzer, A. C. Pathway-specific remodeling of thalamostriatal synapses in parkinsonian mice. Neuron 89, 734–740 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Meffre, J. et al. Orexin in the posterior paraventricular thalamus mediates hunger-related signals in the nucleus accumbens Core. Curr. Biol. 29, 3298–3306 (2019).

    CAS  PubMed  Google Scholar 

  29. Otis, J. M. et al. Paraventricular thalamus projection neurons integrate cortical and hypothalamic signals for cue-reward processing. Neuron 103, 423–431 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Britt, J. P. et al. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76, 790–803 (2012).

    CAS  PubMed Central  Google Scholar 

  31. LeGates, T. A. et al. Reward behaviour is regulated by the strength of hippocampus-nucleus accumbens synapses. Nature 564, 258–262 (2018).

    CAS  PubMed Central  Google Scholar 

  32. Yang, A. K., Mendoza, J. A., Lafferty, C. K., Lacroix, F. & Britt, J. P. Hippocampal input to the nucleus accumbens shell enhances food palatability. Biol. Psychiatry 87, 597–608 (2020).

    CAS  PubMed  Google Scholar 

  33. Stuber, G. D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Beyeler, A. et al. Organization of valence-encoding and projection-defined neurons in the basolateral amygdala. Cell Rep. 22, 905–918 (2018).

    CAS  PubMed Central  Google Scholar 

  35. van Holstein, M., MacLeod, P. E. & Floresco, S. B. Basolateral amygdala - nucleus accumbens circuitry regulates optimal cue-guided risk/reward decision making. Prog. Neuropsychopharmacol. Biol. Psychiatry 98, 109830 (2020).

    PubMed  Google Scholar 

  36. Wall, N. R., De La Parra, M., Callaway, E. M. & Kreitzer, A. C. Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 79, 347–360 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu, J. et al. Whole-brain mapping of direct inputs to dopamine D1 and D2 receptor-expressing medium spiny neurons in the posterior dorsomedial striatum. eNeuro https://www.eneuro.org/content/8/1/ENEURO.0348-20.2020 (2021).

  38. Doig, N. M., Moss, J. & Bolam, J. P. Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J. Neurosci. 30, 14610–14618 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Barrientos, C. et al. Cocaine-induced structural plasticity in input regions to distinct cell types in nucleus accumbens. Biol. Psychiatry 84, 893–904 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Johansson, Y. & Silberberg, G. The functional organization of cortical and thalamic inputs onto five types of striatal neurons is determined by source and target cell identities. Cell Rep. 30, 1178–1194 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Baimel, C., McGarry, L. M. & Carter, A. G. The projection targets of medium spiny neurons govern cocaine-evoked synaptic plasticity in the nucleus accumbens. Cell Rep. 28, 2256–2263 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. MacAskill, A. F., Little, J. P., Cassel, J. M. & Carter, A. G. Subcellular connectivity underlies pathway-specific signaling in the nucleus accumbens. Nat. Neurosci. 15, 1624–1626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. French, S. J. & Totterdell, S. Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens. J. Comp. Neurol. 446, 151–165 (2002).

    Google Scholar 

  44. Gittis, A. H., Nelson, A. B., Thwin, M. T., Palop, J. J. & Kreitzer, A. C. Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J. Neurosci. 30, 2223–2234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mallet, N., Moine, C. L., Charpier, S. & Gonon, F. Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J. Neurosci. 25, 3857–3869 (2005).

    CAS  PubMed Central  Google Scholar 

  46. Berke, J. D., Okatan, M., Skurski, J. & Eichenbaum, H. B. Oscillatory entrainment of striatal neurons in freely moving rats. Neuron 43, 883–896 (2004).

    CAS  PubMed  Google Scholar 

  47. Koós, T. & Tepper, J. M. Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat. Neurosci. 2, 467–472 (1999).

    PubMed  Google Scholar 

  48. Gittis, A. H. et al. Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine. Neuron 71, 858–868 (2011).

    CAS  PubMed Central  Google Scholar 

  49. Lee, K. et al. Parvalbumin interneurons modulate striatal output and enhance performance during associative learning. Neuron 93, 1451–1463 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Owen, S. F., Berke, J. D. & Kreitzer, A. C. Fast-spiking interneurons supply feed-forward control of bursting, calcium, and plasticity for efficient learning. Cell 172, 683–695 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fukuda, T. Network architecture of gap junction-coupled neuronal linkage in the striatum. J. Neurosci. 29, 1235–1243 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Berke, J. D. Functional properties of striatal fast-spiking interneurons. Front. Syst. Neurosci. 5, 45 (2011).

    PubMed  PubMed Central  Google Scholar 

  53. Burke, D. A., Rotstein, H. G. & Alvarez, V. A. Striatal local circuitry: a new framework for lateral inhibition. Neuron 96, 267–284 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Baimel, C., Jang, E., Scudder, S. L., Manoocheri, K. & Carter, A. G. Hippocampal-evoked inhibition of cholinergic interneurons in the nucleus accumbens. Cell Rep. 40, 111042 (2022).

    CAS  PubMed Central  Google Scholar 

  55. Straub, C. et al. Principles of synaptic organization of GABAergic interneurons in the striatum. Neuron 92, 84–92 (2016).

    CAS  PubMed Central  Google Scholar 

  56. Oldenburg, I. A. & Ding, J. B. Cholinergic modulation of synaptic integration and dendritic excitability in the striatum. Curr. Opin. Neurobiol. 21, 425–432 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kramer, P. F. et al. Synaptic-like axo-axonal transmission from striatal cholinergic interneurons onto dopaminergic fibers. Neuron 110, 2949–2960 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Threlfell, S. et al. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75, 58–64 (2012).

    CAS  PubMed  Google Scholar 

  59. Bennett, B. D. & Bolam, J. P. Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat. Neuroscience 62, 707–719 (1994).

    CAS  PubMed  Google Scholar 

  60. Klug, J. R. et al. Differential inputs to striatal cholinergic and parvalbumin interneurons imply functional distinctions. eLife 7, e35657 (2018).

  61. Gage, G. J., Stoetzner, C. R., Wiltschko, A. B. & Berke, J. D. Selective activation of striatal fast-spiking interneurons during choice execution. Neuron 67, 466–479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mallet, N. et al. Dichotomous organization of the external globus pallidus. Neuron 74, 1075–1086 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mallet, N. et al. Arkypallidal cells send a stop signal to striatum. Neuron 89, 308–316 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vachez, Y. M. et al. Ventral arkypallidal neurons inhibit accumbal firing to promote reward consumption. Nat. Neurosci. 24, 379–390 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Straub, C., Tritsch, N. X., Hagan, N. A., Gu, C. & Sabatini, B. L. Multiphasic modulation of cholinergic interneurons by nigrostriatal afferents. J. Neurosci. 34, 8557–8569 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Brown, M. T. C. et al. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492, 452–456 (2012).

    CAS  PubMed  Google Scholar 

  67. van Zessen, R., Phillips, J. L., Budygin, E. A. & Stuber, G. D. Activation of VTA GABA neurons disrupts reward consumption. Neuron 73, 1184–1194 (2012).

    PubMed  PubMed Central  Google Scholar 

  68. Al-Hasani, R. et al. Ventral tegmental area GABAergic inhibition of cholinergic interneurons in the ventral nucleus accumbens shell promotes reward reinforcement. Nat. Neurosci. 24, 1414–1428 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Miranda-Barrientos, J. et al. Ventral tegmental area GABA, glutamate, and glutamate-GABA neurons are heterogeneous in their electrophysiological and pharmacological properties. Eur. J. Neurosci. https://doi.org/10.1111/ejn.15156 (2021).

  70. Root, D. H. et al. Distinct signaling by ventral tegmental area glutamate, gaba, and combinatorial glutamate-GABA neurons in motivated behavior. Cell Rep. 32, 108094 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zych, S. M. & Ford, C. P. Divergent properties and independent regulation of striatal dopamine and GABA co-transmission. Cell Rep. 39, 110823 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kravitz, A. V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kravitz, A. V., Tye, L. D. & Kreitzer, A. C. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15, 816–818 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. London, T. D. et al. Coordinated ramping of dorsal striatal pathways preceding food approach and consumption. J. Neurosci. 38, 3547–3558 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tecuapetla, F., Jin, X., Lima, S. Q. & Costa, R. M. Complementary contributions of striatal projection pathways to action initiation and execution. Cell 166, 703–715 (2016).

    CAS  PubMed  Google Scholar 

  76. Mink, J. W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381–425 (1996).

    CAS  PubMed  Google Scholar 

  77. Parker, J. G. et al. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature 557, 177–182 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Barbera, G. et al. Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information. Neuron 92, 202–213 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Klaus, A. et al. The spatiotemporal organization of the striatum encodes action space. Neuron 95, 1171–1180 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bariselli, S., Fobbs, W. C., Creed, M. C. & Kravitz, A. V. A competitive model for striatal action selection. Brain Res. 1713, 70–79 (2019).

    CAS  PubMed  Google Scholar 

  81. Taverna, S., Ilijic, E. & Surmeier, D. J. Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of parkinson’s disease. J. Neurosci. 28, 5504–5512 (2008).

    CAS  PubMed Central  Google Scholar 

  82. Cepeda, C. et al. Differential electrophysiological properties of dopamine D1 and D2 receptor-containing striatal medium-sized spiny neurons. Eur. J. Neurosci. 27, 671–682 (2008).

    PubMed  Google Scholar 

  83. Willett, J. A. et al. Electrophysiological properties of medium spiny neuron subtypes in the caudate-putamen of prepubertal male and female Drd1a-tdTomato line 6 BAC transgenic mice. eNeuro https://www.eneuro.org/content/6/2/eneuro.0016-19.2019 (2019).

  84. Cui, G. et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242 (2013).

    CAS  PubMed Central  Google Scholar 

  85. Geddes, C. E., Li, H. & Jin, X. Optogenetic editing reveals the hierarchical organization of learned action sequences. Cell 174, 32–43 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zalocusky, K. A. et al. Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making. Nature 531, 642–646 (2016).

    CAS  PubMed Central  Google Scholar 

  87. Cohen, M. X. & Frank, M. J. Neurocomputational models of basal ganglia function in learning, memory and choice. Behav. Brain Res. 199, 141–156 (2009).

    PubMed  Google Scholar 

  88. Girault, J. A. Integrating neurotransmission in striatal medium spiny neurons. Adv. Exp. Med. Biol. https://doi.org/10.1007/978-3-7091-0932-8_18(2012).

  89. Pacheco-Cano, M. T., Bargas, J., Hernández-López, S., Tapia, D. & Galarraga, E. Inhibitory action of dopamine involves a subthreshold Cs+-sensitive conductance in neostriatal neurons. Exp. Brain Res. 110, 205–211 (1996).

    CAS  Google Scholar 

  90. Zhao, B. et al. Differential dopaminergic regulation of inwardly rectifying potassium channel mediated subthreshold dynamics in striatal medium spiny neurons. Neuropharmacology 107, 396–410 (2016).

    CAS  Google Scholar 

  91. Podda, M. V., Riccardi, E., D’Ascenzo, M., Azzena, G. B. & Grassi, C. Dopamine D1-like receptor activation depolarizes medium spiny neurons of the mouse nucleus accumbens by inhibiting inwardly rectifying K+ currents through a cAMP-dependent protein kinase A-independent mechanism. Neuroscience 167, 678–690 (2010).

    CAS  PubMed  Google Scholar 

  92. Nisenbaum, E. S. & Wilson, C. J. Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons. J. Neurosci. 15, 4449–4463 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lahiri, A. K. & Bevan, M. D. Dopaminergic transmission rapidly and persistently enhances excitability of D1 receptor-expressing striatal projection neurons. Neuron 106, 277–290 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Surmeier, D. J., Bargas, J., Hemmings, H. C., Nairn, A. C. & Greengard, P. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14, 385–397 (1995).

    CAS  Google Scholar 

  95. Surmeier, D. J. & Kitai, S. T. D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. Prog. Brain Res. 99, 309–324 (1993).

    CAS  PubMed  Google Scholar 

  96. Yagishita, S. et al. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345, 1616–1620 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mangiavacchi, S. & Wolf, M. E. D1 dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinase A. J. Neurochem. 88, 1261–1271 (2004).

    CAS  PubMed  Google Scholar 

  98. Shen, W., Flajolet, M., Greengard, P. & Surmeier, D. J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kreitzer, A. C. & Malenka, R. C. Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J. Neurosci. 25, 10537–10545 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lemos, J. C. et al. Enhanced GABA transmission drives bradykinesia following loss of dopamine D2 receptor signaling. Neuron 90, 824–838 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Dobbs, L. K. et al. Dopamine regulation of lateral inhibition between striatal neurons gates the stimulant actions of cocaine. Neuron 90, 1100–1113 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Creed, M., Ntamati, N. R., Chandra, R., Lobo, M. K. & Lüscher, C. Convergence of reinforcing and anhedonic cocaine effects in the ventral pallidum. Neuron 92, 214–226 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cazorla, M. et al. Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry. Neuron 81, 153–164 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Aristieta et al. A disynaptic circuit in the globus pallidus controls locomotion inhibition. Curr. Biol. 31, 707–721 (2021).

    CAS  PubMed  Google Scholar 

  105. Cole, S. L., Robinson, M. J. F. & Berridge, K. C. Optogenetic self-stimulation in the nucleus accumbens: D1 reward versus D2 ambivalence. PLoS ONE 13, e0207694 (2018).

    PubMed  PubMed Central  Google Scholar 

  106. Wu, Y., Richard, S. & Parent, A. The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neurosci. Res. 38, 49–62 (2000).

    CAS  PubMed  Google Scholar 

  107. Spix, T. A. et al. Population-specific neuromodulation prolongs therapeutic benefits of deep brain stimulation. Science 374, 201–206 (2021).

    CAS  PubMed  Google Scholar 

  108. Cui, Q. et al. Striatal direct pathway targets Npas1+ pallidal neurons. J. Neurosci. 41, 3966–3987 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. O’Connor, E. C. et al. Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron 88, 553–564 (2015).

    PubMed  Google Scholar 

  110. Bocklisch, C. et al. Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science 341, 1521–1525 (2013).

    CAS  PubMed  Google Scholar 

  111. Gallo, E. F. et al. Upregulation of dopamine D2 receptors in the nucleus accumbens indirect pathway increases locomotion but does not reduce alcohol consumption. Neuropsychopharmacology 40, 1609–1618 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, L. et al. Optogenetic activation of GABAergic neurons in the nucleus accumbens decreases the activity of the ventral pallidum and the expression of cocaine-context-associated memory. Int. J. Neuropsychopharmacol. 17, 753–763 (2014).

    CAS  PubMed  Google Scholar 

  113. Kupchik, Y. M. et al. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat. Neurosci. 18, 1230–1232 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Pardo-Garcia, T. R. et al. Ventral pallidum Is the primary target for accumbens D1 projections driving cocaine seeking. J. Neurosci. 39, 2041–2051 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Tripathi, A., Prensa, L., Cebrián, C. & Mengual, E. Axonal branching patterns of nucleus accumbens neurons in the rat. J. Comp. Neurol. 518, 4649–4673 (2010).

    PubMed  Google Scholar 

  116. Root, D. H. The ventromedial ventral pallidum subregion is necessary for outcome-specific Pavlovian-instrumental transfer. J. Neurosci. 33, 18707–18709 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Soares-Cunha, C. et al. Nucleus accumbens medium spiny neurons subtypes signal both reward and aversion. Mol. Psychiatry 25, 3241–3255 (2020).

    CAS  PubMed  Google Scholar 

  118. Abdi, A. et al. Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J. Neurosci. 35, 6667–6688 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Flandin, P., Kimura, S. & Rubenstein, J. L. R. The progenitor zone of the ventral medial ganglionic eminence requires Nkx2-1 to generate most of the globus pallidus but few neocortical interneurons. J. Neurosci. 30, 2812–2823 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Butt, S. J. B. et al. The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron 59, 722–732 (2008).

    CAS  PubMed Central  Google Scholar 

  121. Dodson, P. D. et al. Distinct developmental origins manifest in the specialized encoding of movement by adult neurons of the external globus pallidus. Neuron 86, 501–513 (2015).

    CAS  PubMed Central  Google Scholar 

  122. Abecassis, Z. A. et al. Npas1+-Nkx2.1+ neurons are an integral part of the cortico-pallido-cortical loop. J. Neurosci. 40, 743–768 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Batista-Brito, R. et al. The cell-intrinsic requirement of Sox6 for cortical interneuron development. Neuron 63, 466–481 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Abrahao, K. P. & Lovinger, D. M. Classification of GABAergic neuron subtypes from the globus pallidus using wild-type and transgenic mice. J. Physiol. 596, 4219–4235 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mastro, K. J., Bouchard, R. S., Holt, H. A. K. & Gittis, A. H. Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J. Neurosci. 34, 2087–2099 (2014).

    CAS  PubMed Central  Google Scholar 

  126. Mastro, K. J. et al. Cell-specific pallidal intervention induces long-lasting motor recovery in dopamine depleted mice. Nat. Neurosci. 20, 815–823 (2017).

    CAS  PubMed Central  Google Scholar 

  127. Hernández, V. M. et al. Parvalbumin+ neurons and Npas1+ neurons are distinct neuron classes in the mouse external globus pallidus. J. Neurosci. 35, 11830–11847 (2015).

    PubMed  PubMed Central  Google Scholar 

  128. Liodis, P. et al. Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. J. Neurosci. 27, 3078–3089 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Filice, F., Vörckel, K. J., Sungur, A. Ö., Wöhr, M. & Schwaller, B. Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol. Brain. 9, 10 (2016).

    PubMed Central  Google Scholar 

  130. Caballero, A., Flores-Barrera, E., Thomases, D. R. & Tseng, K. Y. Downregulation of parvalbumin expression in the prefrontal cortex during adolescence causes enduring prefrontal disinhibition in adulthood. Neuropsychopharmacology 45, 1527–1535 (2020).

    CAS  PubMed Central  Google Scholar 

  131. Lilascharoen, V. et al. Divergent pallidal pathways underlying distinct parkinsonian behavioral deficits. Nat. Neurosci. 24, 504–515 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Knowland, D. et al. Distinct ventral pallidal neural populations mediate separate symptoms of depression. Cell 170, 284–297 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Faget, L. et al. Opponent control of behavioral reinforcement by inhibitory and excitatory projections from the ventral pallidum. Nat. Commun. 9, 849 (2018).

    PubMed Central  Google Scholar 

  134. Tooley, J. et al. Glutamatergic ventral pallidal neurons modulate activity of the habenula-tegmental circuitry and constrain reward seeking. Biol. Psychiatry 83, 1012–1023 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Stephenson-Jones, M. et al. Opposing contributions of GABAergic and glutamatergic ventral pallidal neurons to motivational behaviors. Neuron 105, 921–933 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Farrell, M. R. et al. Ventral pallidum GABA neurons mediate motivation underlying risky choice. J. Neurosci. 41, 4500–4513 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Mahler, S. V. et al. Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat. Neurosci. 17, 577–585 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Heinsbroek, J. A. et al. Opposing regulation of cocaine seeking by glutamate and GABA neurons in the ventral pallidum. Cell Rep. 30, 2018–2027 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wallace, M. L. et al. Genetically distinct parallel pathways in the entopeduncular nucleus for limbic and sensorimotor output of the basal ganglia. Neuron 94, 138–152 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Glajch, K. E. et al. Npas1+ pallidal neurons target striatal projection neurons. J. Neurosci. 36, 5472–5488 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Churchill, L. & Kalivas, P. W. A topographically organized gamma-aminobutyric acid projection from the ventral pallidum to the nucleus accumbens in the rat. J. Comp. Neurol. 345, 579–595 (1994).

    CAS  PubMed  Google Scholar 

  142. Banghart, M. R., Neufeld, S. Q., Wong, N. C. & Sabatini, B. L. Enkephalin disinhibits mu opioid receptor-rich striatal patches via delta opioid receptors. Neuron 88, 1227–1239 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Al-Hasani, R. et al. In vivo detection of optically-evoked opioid peptide release. eLife 7, e36520 (2018).

  144. Saunders, A., Huang, K. W. & Sabatini, B. L. Globus Pallidus externus neurons expressing parvalbumin interconnect the subthalamic nucleus and striatal interneurons. PLoS ONE 11, e0149798 (2016).

    PubMed  PubMed Central  Google Scholar 

  145. Gielow, M. R. & Zaborszky, L. The input–output relationship of the cholinergic basal forebrain. Cell Rep. 18, 1817–1830 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Gritton, H. J. et al. Cortical cholinergic signaling controls the detection of cues. Proc. Natl Acad. Sci. USA 113, E1089–E1097 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Saunders, A. et al. A direct GABAergic output from the basal ganglia to frontal cortex. Nature 521, 85–89 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Baxter, M. G. & Chiba, A. A. Cognitive functions of the basal forebrain. Curr. Opin. Neurobiol. 9, 178–183 (1999).

    CAS  PubMed  Google Scholar 

  149. Bariselli, S., Miyazaki, N. L., Creed, M. C. & Kravitz, A. V. Orbitofrontal-striatal potentiation underlies cocaine-induced hyperactivity. Nat. Commun. 11, 3996 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Creed, M., Pascoli, V. J. & Lüscher, C. Addiction therapy. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 347, 659–664 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Brain and Behavior Research Foundation (grant no. 27197 to M.C.C.), Rita Allen Scholar Award in Pain (to M.C.C), the National Institutes on Drug Abuse (R01DA049924 and R01DA058755 to M.C.C.) and a Canadian Institutes of Health Research Michael Smith Foreign Study Supplement (to L.Z.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meaghan C. Creed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Talia Lerner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L.Z., Creed, M.C. Updating the striatal–pallidal wiring diagram. Nat Neurosci 27, 15–27 (2024). https://doi.org/10.1038/s41593-023-01518-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01518-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing