Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell and circuit complexity of the external globus pallidus

Abstract

The external globus pallidus (GPe) of the basal ganglia has been underappreciated owing to poor understanding of its cells and circuits. It was assumed that the GPe consisted of a homogeneous neuron population primarily serving as a ‘relay station’ for information flowing through the indirect basal ganglia pathway. However, the advent of advanced tools in rodent models has sparked a resurgence in interest in the GPe. Here, we review recent data that have unveiled the cell and circuit complexity of the GPe. These discoveries have revealed that the GPe does not conform to traditional views of the basal ganglia. In particular, recent evidence confirms that the afferent and efferent connections of the GPe span both the direct and the indirect pathways. Furthermore, the GPe displays broad interconnectivity beyond the basal ganglia, consistent with its emerging multifaceted roles in both motor and non-motor functions. In summary, recent data prompt new proposals for computational rules of the basal ganglia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classic model and GPe-centric model of the basal ganglia.
Fig. 2: Developmental and marker heterogeneity of GPe neurons.
Fig. 3: Inputs to the GPe.
Fig. 4: Distinct efferent projections of GPe neuron subtypes.
Fig. 5: Cellular and circuit substrates for functional regulation by GPe neurons.

Similar content being viewed by others

References

  1. Grillner, S. & El Manira, A. Current principles of motor control, with special reference to vertebrate locomotion. Physiol. Rev. 100, 271–320 (2020).

    Article  PubMed  Google Scholar 

  2. Wallace, M. L. et al. Genetically distinct parallel pathways in the entopeduncular nucleus for limbic and sensorimotor output of the basal ganglia. Neuron 94, 138–152 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Poulin, J.-F. et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat. Neurosci. 21, 1260–1271 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wallén-Mackenzie, Å. et al. Spatio-molecular domains identified in the mouse subthalamic nucleus and neighboring glutamatergic and GABAergic brain structures. Commun. Biol. 3, 338 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. McElvain, L. E. et al. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron 109, 1721–1738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miyamoto, Y. & Fukuda, T. The habenula-targeting neurons in the mouse entopeduncular nucleus contain not only somatostatin-positive neurons but also nitric oxide synthase-positive neurons. Brain Struct. Funct. 226, 1497–1510 (2021).

    CAS  Google Scholar 

  9. Jeon, H. et al. Topographic connectivity and cellular profiling reveal detailed input pathways and functionally distinct cell types in the subthalamic nucleus. Cell Rep. 38, 110439 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, D. et al. A common hub for sleep and motor control in the substantia nigra. Science 367, 440–445 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Mastro, K. J. et al. Cell-specific pallidal intervention induces long-lasting motor recovery in dopamine-depleted mice. Nat. Neurosci. 20, 815–823 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Glajch, K. E. et al. Npas1+ pallidal neurons target striatal projection neurons. J. Neurosci. 36, 5472–5488 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pamukcu, A. et al. Parvalbumin+ and Npas1+ pallidal neurons have distinct circuit topology and function. J. Neurosci. 40, 7855–7876 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cui, Q. et al. Dissociable roles of pallidal neuron subtypes in regulating motor patterns. J. Neurosci. 41, 4036–4059 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aristieta, A. et al. A disynaptic circuit in the globus pallidus controls locomotion inhibition. Curr. Biol. 31, 707–721 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Lilascharoen, V. et al. Divergent pallidal pathways underlying distinct parkinsonian behavioral deficits. Nat. Neurosci. 24, 504–515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arkadir, D., Morris, G., Vaadia, E. & Bergman, H. Independent coding of movement direction and reward prediction by single pallidal neurons. J. Neurosci. 24, 10047–10056 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoshida, A. & Tanaka, M. Two types of neurons in the primate globus pallidus external segment play distinct roles in antisaccade generation. Cereb. Cortex 26, 1187–1199 (2016).

    Article  Google Scholar 

  19. Gu, B. M., Schmidt, R. & Berke, J. D. Globus pallidus dynamics reveal covert strategies for behavioral inhibition. eLife 9, e57215 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kita, H. Globus pallidus external segment. Prog. Brain Res. 160, 111–133 (2007).

    CAS  Google Scholar 

  21. Jaeger, D. & Kita, H. Functional connectivity and integrative properties of globus pallidus neurons. Neuroscience 198, 44–53 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Hegeman, D. J., Hong, E. S., Hernández, V. M. & Chan, C. S. The external globus pallidus: progress and perspectives. Eur. J. Neurosci. 43, 1239–1265 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nóbrega-Pereira, S. et al. Origin and molecular specification of globus pallidus neurons. J. Neurosci. 30, 2824–2834 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Flandin, P., Kimura, S. & Rubenstein, J. L. R. The progenitor zone of the ventral medial ganglionic eminence requires Nkx2-1 to generate most of the globus pallidus but few neocortical interneurons. J. Neurosci. 30, 2812–2823 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abdi, A. et al. Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J. Neurosci. 35, 6667–6688 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dodson, P. D. et al. Distinct developmental origins manifest in the specialized encoding of movement by adult neurons of the external globus pallidus. Neuron 86, 501–513 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hernández, V. M. et al. Parvalbumin+ neurons and Npas1+ neurons are distinct neuron classes in the mouse external globus pallidus. J. Neurosci. 35, 11830–11847 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Abecassis, Z. A. et al. Npas1+-Nkx2.1+ neurons are an integral part of the cortico–pallido–cortical loop. J. Neurosci. 40, 743–768 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mastro, K. J., Bouchard, R. S., Holt, H. A. K. & Gittis, A. H. Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J. Neurosci. 34, 2087–2099 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saunders, A. et al. A direct GABAergic output from the basal ganglia to frontal cortex. Nature 521, 85–89 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Higgs, M. H., Jones, J. A., Chan, C. S. & Wilson, C. J. Periodic unitary synaptic currents in the mouse globus pallidus during spontaneous firing in slices. J. Neurophysiol. 125, 1482–1500 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mizutani, K., Takahashi, S., Okamoto, S., Karube, F. & Fujiyama, F. Substance P effects exclusively on prototypic neurons in mouse globus pallidus. Brain Struct. Funct. 222, 4089–4110 (2017).

    CAS  Google Scholar 

  33. Oh, Y.-M. et al. Using a novel PV-Cre rat model to characterize pallidonigral cells and their terminations. Brain Struct. Funct. 222, 2359–2378 (2017).

    CAS  Google Scholar 

  34. Abrahao, K. P. & Lovinger, D. M. Classification of GABAergic neuron subtypes from the globus pallidus using wild-type and transgenic mice. J. Physiol. 596, 4219–4235 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saunders, A., Huang, K. W. & Sabatini, B. L. Globus pallidus externus neurons expressing parvalbumin interconnect the subthalamic nucleus and striatal interneurons. PloS ONE 11, e0149798 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Katabi, S., Adler, A., Deffains, M. & Bergman, H. Dichotomous activity and function of neurons with low- and high-frequency discharge in the external globus pallidus of non-human primates. Cell Rep. 42, 111898 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Mallet, N. et al. Dichotomous organization of the external globus pallidus. Neuron 74, 1075–1086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ketzef, M. & Silberberg, G. Differential synaptic input to external globus pallidus neuronal subpopulations in vivo. Neuron 109, 516–529 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Fishell, G. & Kepecs, A. Interneuron types as attractors and controllers. Annu. Rev. Neurosci. 43, 1–30 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Long, J. E., Cobos, I., Potter, G. B. & Rubenstein, J. L. R. Dlx1&2 and Mash1 transcription factors control MGE and CGE patterning and differentiation through parallel and overlapping pathways. Cereb. Cortex 19, i96–i106 (2009).

    Article  Google Scholar 

  42. Gelman, D. M. et al. The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J. Neurosci. 29, 9380–9389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gelman, D. et al. A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area. J. Neurosci. 31, 16570–16580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, Y.-J. J. et al. Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types. Sci. Rep. 7, 45656 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Poulin, J.-F. et al. PRISM: a progenitor-restricted intersectional fate mapping approach redefines forebrain lineages. Dev. Cell 53, 740–753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hunt, A. J. et al. Paraventricular hypothalamic and amygdalar CRF neurons synapse in the external globus pallidus. Brain Struct. Funct. 223, 2685–2698 (2018).

    CAS  Google Scholar 

  47. Cui, Q. et al. Striatal direct pathway targets Npas1+ pallidal neurons. J. Neurosci. 41, 3966–3987 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chang, S. et al. Tripartite extended amygdala-basal ganglia CRH circuit drives locomotor activation and avoidance behavior. Sci. Adv. 8, eabo1023 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fujiyama, F. et al. Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur. J. Neurosci. 33, 668–677 (2011).

    Article  PubMed  Google Scholar 

  50. Wu, Y., Richard, S. & Parent, A. The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neurosci. Res. 38, 49–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Lévesque, M. & Parent, A. The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc. Natl Acad. Sci. USA 102, 11888–11893 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cazorla, M. et al. Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry. Neuron 81, 153–164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Okamoto, S. et al. Overlapping projections of neighboring direct and indirect pathway neostriatal neurons to globus pallidus external segment. iScience 23, 101409 (2020).

  54. Foster, N. N. et al. The mouse cortico–basal ganglia–thalamic network. Nature 598, 188–194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yuan, X.-S. et al. Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus. eLife 6, e29055 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Johansson, Y. & Ketzef, M. Sensory processing in external globus pallidus neurons. Cell Rep. 42, 111952 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Jones, J. A., Higgs, M. H., Olivares, E., Peña, J. & Wilson, C. J. Spontaneous activity of the local GABAergic synaptic network causes irregular neuronal firing in the external globus pallidus. J. Neurosci. 43, 1281–1297 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Sato, F., Parent, M., Levesque, M. & Parent, A. Axonal branching pattern of neurons of the subthalamic nucleus in primates. J. Comp. Neurol. 424, 142–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Sadek, A. R., Magill, P. J. & Bolam, J. P. A single-cell analysis of intrinsic connectivity in the rat globus pallidus. J. Neurosci. 27, 6352–6362 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bugaysen, J., Bar-Gad, I. & Korngreen, A. Continuous modulation of action potential firing by a unitary GABAergic connection in the globus pallidus in vitro. J. Neurosci. 33, 12805–12809 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fujiyama, F. et al. A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats. Brain Struct. Funct. 221, 4733–4740 (2016).

    CAS  Google Scholar 

  62. Parent, A. et al. Organization of the basal ganglia: the importance of axonal collateralization. Trends Neurosci. 23, S20–S27 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Koshimizu, Y., Fujiyama, F., Nakamura, K. C., Furuta, T. & Kaneko, T. Quantitative analysis of axon bouton distribution of subthalamic nucleus neurons in the rat by single neuron visualization with a viral vector. J. Comp. Neurol. 521, 2125–2146 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Xiao, C. et al. Nicotinic receptor subtype-selective circuit patterns in the subthalamic nucleus. J. Neurosci. 35, 3734–3746 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Karube, F., Takahashi, S., Kobayashi, K. & Fujiyama, F. Motor cortex can directly drive the globus pallidus neurons in a projection neuron type-dependent manner in the rat. eLife 8, e49511 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Garcia, A. F., Crummy, E. A., Webb, I. G., Nooney, M. N. & Ferguson, S. M. Distinct populations of cortical pyramidal neurons mediate drug reward and aversion. Nat. Commun. 12, 182 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

    Article  Google Scholar 

  68. Muñoz-Castañeda, R. et al. Cellular anatomy of the mouse primary motor cortex. Nature 598, 159–166 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Parent, M. & Parent, A. Single-axon tracing and three-dimensional reconstruction of centre median–parafascicular thalamic neurons in primates. J. Comp. Neurol. 481, 127–144 (2005).

    Article  PubMed  Google Scholar 

  70. Yasukawa, T., Kita, T., Xue, Y. & Kita, H. Rat intralaminar thalamic nuclei projections to the globus pallidus: a biotinylated dextran amine anterograde tracing study. J. Comp. Neurol. 471, 153–167 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Kita, H., Nambu, A., Kaneda, K., Tachibana, Y. & Takada, M. Role of ionotropic glutamatergic and GABAergic inputs on the firing activity of neurons in the external pallidum in awake monkeys. J. Neurophysiol. 92, 3069–3084 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Jan, C. et al. Dopaminergic innervation of the pallidum in the normal state, in MPTP-treated monkeys and in parkinsonian patients. Eur. J. Neurosci. 12, 4525–4535 (2000).

    CAS  PubMed  Google Scholar 

  73. Prensa, L., Cossette, M. & Parent, A. Dopaminergic innervation of human basal ganglia. J. Chem. Neuroanat. 20, 207–213 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Prensa, L. & Parent, A. The nigrostriatal pathway in the rat: a single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J. Neurosci. 21, 7247–7260 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Debeir, T. et al. Effect of intrastriatal 6-OHDA lesion on dopaminergic innervation of the rat cortex and globus pallidus. Exp. Neurol. 193, 444–454 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Anaya-Martinez, V., Martinez-Marcos, A., Martinez-Fong, D., Aceves, J. & Erlij, D. Substantia nigra compacta neurons that innervate the reticular thalamic nucleus in the rat also project to striatum or globus pallidus: implications for abnormal motor behavior. Neuroscience 143, 477–486 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Smith, Y. & Villalba, R. Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and parkinsonian brains. Mov. Disord. 23, S534–S547 (2008).

    Article  PubMed  Google Scholar 

  78. Dopeso-Reyes, I. G. et al. Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Front. Neuroanat. 8, 146 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Aransay, A., Rodríguez-López, C., García-Amado, M., Clascá, F. & Prensa, L. Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis. Front. Neuroanat. 9, 59 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Giovanniello, J. et al. A central amygdala–globus pallidus circuit conveys unconditioned stimulus-related information and controls fear learning. J. Neurosci. 40, 9043–9054 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sztainberg, Y., Kuperman, Y., Justice, N. & Chen, A. An anxiolytic role for CRF receptor type 1 in the globus pallidus. J. Neurosci. 31, 17416–17424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pollak Dorocic, I. et al. A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron 83, 663–678 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Stephenson-Jones, M. et al. A basal ganglia circuit for evaluating action outcomes. Nature 539, 289–293 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Qiu, M. H., Chen, M. C., Wu, J., Nelson, D. & Lu, J. Deep brain stimulation in the globus pallidus externa promotes sleep. Neuroscience 322, 115–120 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Wessel, J. R. & Aron, A. R. On the globality of motor suppression: unexpected events and their influence on behavior and cognition. Neuron 93, 259–280 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fife, K. H. et al. Causal role for the subthalamic nucleus in interrupting behavior. eLife 6, e27689 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Schmidt, R., Leventhal, D. K., Mallet, N., Chen, F. & Berke, J. D. Canceling actions involves a race between basal ganglia pathways. Nat. Neurosci. 16, 1118–1124 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hamani, C., Saint-Cyr, J. A., Fraser, J., Kaplitt, M. & Lozano, A. M. The subthalamic nucleus in the context of movement disorders. Brain 127, 4–20 (2004).

    Article  PubMed  Google Scholar 

  89. Aron, A. R. et al. Converging evidence for a fronto–basal–ganglia network for inhibitory control of action and cognition. J. Neurosci. 27, 11860–11864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Aron, A. R. & Poldrack, R. A. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 26, 2424–2433 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eagle, D. M. et al. Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. Cereb. Cortex 18, 178–188 (2008).

    Article  Google Scholar 

  92. Schweizer, N. et al. Limiting glutamate transmission in a Vglut2-expressing subpopulation of the subthalamic nucleus is sufficient to cause hyperlocomotion. Proc. Natl Acad. Sci. USA 111, 7837–7842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Adam, E. M., Johns, T. & Sur, M. Dynamic control of visually guided locomotion through corticosubthalamic projections. Cell Rep. 40, 111139 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sato, F., Lavallée, P., Lévesque, M. & Parent, A. Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J. Comp. Neurol. 417, 17–31 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Cui, G. et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Markowitz, J. E. et al. The striatum organizes 3D behavior via moment-to-moment action selection. Cell 174, 44–58 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Maltese, M., March, J. R., Bashaw, A. G. & Tritsch, N. X. Dopamine differentially modulates the size of projection neuron ensembles in the intact and dopamine-depleted striatum. eLife 10, e68041 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mallet, N. et al. Arkypallidal cells send a stop signal to striatum. Neuron 89, 308–316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Beier, K. T. et al. Rabies screen reveals GPe control of cocaine-triggered plasticity. Nature 549, 345–350 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Lee, C. R., Abercrombie, E. D. & Tepper, J. M. Pallidal control of substantia nigra dopaminergic neuron firing pattern and its relation to extracellular neostriatal dopamine levels. Neuroscience 129, 481–489 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Cobb, W. S. & Abercrombie, E. D. Relative involvement of globus pallidus and subthalamic nucleus in the regulation of somatodendritic dopamine release in substantia nigra is dopamine-dependent. Neuroscience 119, 777–786 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Brazhnik, E., Shah, F. & Tepper, J. M. GABAergic afferents activate both GABAA and GABAB receptors in mouse substantia nigra dopaminergic neurons in vivo. J. Neurosci. 28, 10386–10398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Evans, R. C. et al. Functional dissection of basal ganglia inhibitory inputs onto substantia nigra dopaminergic neurons. Cell Rep. 32, 108156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits: a decade of progress. Neuron 98, 256–281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ahrlund-Richter, S. et al. A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse. Nat. Neurosci. 22, 657–668 (2019).

    Article  PubMed  Google Scholar 

  107. Clayton, K. K. et al. Auditory corticothalamic neurons are recruited by motor preparatory inputs. Curr. Biol. 31, 310–321 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Vetrivelan, R., Qiu, M.-H., Chang, C. & Lu, J. Role of basal ganglia in sleep–wake regulation: neural circuitry and clinical significance. Front. Neuroanat. 4, 145 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lazarus, M., Chen, J.-F., Urade, Y. & Huang, Z.-L. Role of the basal ganglia in the control of sleep and wakefulness. Curr. Opin. Neurobiol. 23, 780–785 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dwi Wahyu, I., Chiken, S., Hasegawa, T., Sano, H. & Nambu, A. Abnormal cortico–basal ganglia neurotransmission in a mouse model of l-DOPA-induced dyskinesia. J. Neurosci. 41, 2668–2683 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Raz, A., Vaadia, E. & Bergman, H. Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J. Neurosci. 20, 8559–8571 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Magill, P. J., Bolam, J. P. & Bevan, M. D. Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus–globus pallidus network. Neuroscience 106, 313–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Chan, C. S. et al. HCN channelopathy in external globus pallidus neurons in models of Parkinson’s disease. Nat. Neurosci. 14, 85–92 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Leventhal, D. K. et al. Basal ganglia β oscillations accompany cue utilization. Neuron 73, 523–536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kuhn, A. A., Kupsch, A., Schneider, G. H. & Brown, P. Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci. 23, 1956–1960 (2006).

    Article  PubMed  Google Scholar 

  116. Gatev, P., Darbin, O. & Wichmann, T. Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov. Disord. 21, 1566–1577 (2006).

    Article  PubMed  Google Scholar 

  117. Little, S. & Brown, P. The functional role of β oscillations in Parkinson’s disease. Parkinsonism Relat. Disord. 20, S44–S48 (2014).

    Article  Google Scholar 

  118. Stein, E. & Bar-Gad, I. β oscillations in the cortico–basal ganglia loop during parkinsonism. Exp. Neurol. 245, 52–59 (2013).

    Article  PubMed  Google Scholar 

  119. de la Crompe, B. et al. The globus pallidus orchestrates abnormal network dynamics in a model of parkinsonism. Nat. Commun. 11, 1570 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kovaleski, R. F. et al. Dysregulation of external globus pallidus–subthalamic nucleus network dynamics in parkinsonian mice during cortical slow-wave activity and activation. J. Physiol. 598, 1897–1927 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Starr, M. S., Starr, B. S. & Kaur, S. Stimulation of basal and l-DOPA-induced motor activity by glutamate antagonists in animal models of Parkinson’s disease. Neurosci. Biobehav. Rev. 21, 437–446 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Kelsey, J. E. et al. NMDA receptor antagonists ameliorate the stepping deficits produced by unilateral medial forebrain bundle injections of 6-OHDA in rats. Psychopharmacology 175, 179–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Liu, J. et al. Facilitation of GluN2C-containing NMDA receptors in the external globus pallidus increases firing of fast spiking neurons and improves motor function in a hemiparkinsonian mouse model. Neurobiol. Dis. 150, 105254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cui, Q. et al. Blunted mGluR activation disinhibits striatopallidal transmission in parkinsonian mice. Cell Rep. 17, 2431–2444 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fan, K. Y., Baufreton, J., Surmeier, D. J., Chan, C. S. & Bevan, M. D. Proliferation of external globus pallidus–subthalamic nucleus synapses following degeneration of midbrain dopamine neurons. J. Neurosci. 32, 13718–13728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chu, H. Y., Atherton, J. F., Wokosin, D., Surmeier, D. J. & Bevan, M. D. Heterosynaptic regulation of external globus pallidus inputs to the subthalamic nucleus by the motor cortex. Neuron 85, 364–376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Spix, T. A. et al. Population-specific neuromodulation prolongs therapeutic benefits of deep brain stimulation. Science 374, 201–206 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Starr, P. A., Kang, G. A., Heath, S., Shimamoto, S. & Turner, R. S. Pallidal neuronal discharge in Huntington’s disease: support for selective loss of striatal cells originating the indirect pathway. Exp. Neurol. 211, 227–233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Temel, Y. et al. Motor and cognitive improvement by deep brain stimulation in a transgenic rat model of Huntington’s disease. Neurosci. Lett. 406, 138–141 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Beste, C. et al. Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington’s disease. Brain Struct. Funct. 220, 2441–2448 (2015).

    CAS  Google Scholar 

  131. Reiner, A., Dragatsis, I. & Dietrich, P. Genetics and neuropathology of Huntington’s disease. Int. Rev. Neurobiol. 98, 325–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Waldvogel, H. J., Kim, E. H., Tippett, L. J., Vonsattel, J.-P. G. & Faull, R. L. M. The neuropathology of Huntington’s disease. Curr. Top. Behav. Neurosci. 22, 33–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Deng, Y., Wang, H., Joni, M., Sekhri, R. & Reiner, A. Progression of basal ganglia pathology in heterozygous Q175 knock-in Huntington’s disease mice. J. Comp. Neurol. 529, 1327–1371 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Waldvogel, H. J. & Faull, R. L. M. The diversity of GABAA receptor subunit distribution in the normal and Huntington’s disease human brain. Adv. Pharmacol. 73, 223–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Perez-Rosello, T. et al. Enhanced striatopallidal γ-aminobutyric acid (GABA)A receptor transmission in mouse models of Huntington’s disease. Mov. Disord. 34, 684–696 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Barry, J., Akopian, G., Cepeda, C. & Levine, M. S. Striatal direct and indirect pathway output structures are differentially altered in mouse models of Huntington’s disease. J. Neurosci. 38, 4678–4694 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Plotkin, J. L. et al. Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease. Neuron 83, 178–188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sebastianutto, I., Cenci, M. A. & Fieblinger, T. Alterations of striatal indirect pathway neurons precede motor deficits in two mouse models of Huntington’s disease. Neurobiol. Dis. 105, 117–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Carrillo-Reid, L. et al. Mutant huntingtin enhances activation of dendritic Kv4 K+ channels in striatal spiny projection neurons. eLife 8, e40818 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Callahan, J. W., Wokosin, D. L. & Bevan, M. D. Dysregulation of the basal ganglia indirect pathway in early symptomatic Q175 Huntington’s disease mice. J. Neurosci. 42, 2080–2102 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Breakefield, X. O. et al. The pathophysiological basis of dystonias. Nat. Rev. Neurosci. 9, 222–234 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Tanabe, L. M., Kim, C. E., Alagem, N. & Dauer, W. T. Primary dystonia: molecules and mechanisms. Nat. Rev. Neurol. 5, 598–609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Starr, P. A. et al. Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson’s disease and normal macaque. J. Neurophysiol. 93, 3165–3176 (2005).

    Article  PubMed  Google Scholar 

  144. Chiken, S., Shashidharan, P. & Nambu, A. Cortically evoked long-lasting inhibition of pallidal neurons in a transgenic mouse model of dystonia. J. Neurosci. 28, 13967–13977 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Baron, M. S., Chaniary, K. D., Rice, A. C. & Shapiro, S. M. Multi-neuronal recordings in the basal ganglia in normal and dystonic rats. Front. Syst. Neurosci. 5, 67 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Nambu, A. et al. Reduced pallidal output causes dystonia. Front. Syst. Neurosci. 5, 89 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Nishibayashi, H. et al. Cortically evoked responses of human pallidal neurons recorded during stereotactic neurosurgery. Mov. Disord. 26, 469–476 (2011).

    Article  PubMed  Google Scholar 

  148. Sciamanna, G. et al. Optogenetic activation of striatopallidal neurons reveals altered HCN gating in DYT1 dystonia. Cell Rep. 31, 107644 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Assaf, F. & Schiller, Y. A chemogenetic approach for treating experimental Parkinson’s disease. Mov. Disord. 34, 469–479 (2019).

    CAS  PubMed  Google Scholar 

  150. Mallet, N. et al. Parkinsonian β oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J. Neurosci. 28, 14245–14258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank past and current members of the Chan laboratory for their creativity and dedication to our understanding of the pallidum. This work was supported by NIH NS069777 (C.S.C.), MH112768 (C.S.C.), NS097901 (C.S.C.), MH109466 (C.S.C.), NS088528 (C.S.C.), AG020506 (A.P.) and a Parkinson’s Foundation postdoctoral fellowship (PF-PRF-837511 to C.D.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Savio Chan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Genevieve Konopka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courtney, C.D., Pamukcu, A. & Chan, C.S. Cell and circuit complexity of the external globus pallidus. Nat Neurosci 26, 1147–1159 (2023). https://doi.org/10.1038/s41593-023-01368-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01368-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing