Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mendelian randomization analyses support causal relationships between brain imaging-derived phenotypes and risk of psychiatric disorders

Abstract

Observational studies have reported the correlations between brain imaging-derived phenotypes (IDPs) and psychiatric disorders; however, whether the relationships are causal is uncertain. We conducted bidirectional two-sample Mendelian randomization (MR) analyses to explore the causalities between 587 reliable IDPs (N = 33,224 individuals) and 10 psychiatric disorders (N = 9,725 to 161,405). We identified nine IDPs for which there was evidence of a causal influence on risk of schizophrenia, anorexia nervosa and bipolar disorder. For example, 1 s.d. increase in the orientation dispersion index of the forceps major was associated with 32% lower odds of schizophrenia risk. Reverse MR indicated that only genetically predicted schizophrenia was positively associated with two IDPs, the cortical surface area and the volume of the right pars orbitalis. We established the BrainMR database (http://www.bigc.online/BrainMR/) to share our results. Our findings provide potential strategies for the prediction and intervention for psychiatric disorder risk at the brain-imaging level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow of the causal inference between IDPs and psychiatric disorders.
Fig. 2: Causalities in the forward MR.
Fig. 3: Causalities in the reverse MR.

Similar content being viewed by others

Data availability

All GWAS data are publicly available with the exception of the posttraumatic stress disorder data from Gelernter et al.67. These data are available through dbGaP accession number phs001672.v1.p1. Major depressive disorder GWAS data without the UK Biobank data were obtained by contacting the Psychiatric Genomics Consortium workgroup data access committee representative (https://www.med.unc.edu/pgc/pgc-workgroups/major-depressive-disorder/). The GWASs for other psychiatric disorders were provided by the Psychiatric Genomics Consortium (https://www.med.unc.edu/pgc). Download links for all public datasets are available in Supplementary Table 2. The GWASs for brain IDPs can be obtained from the BIG40 web browser (https://open.win.ox.ac.uk/ukbiobank/big40/). Data in the NHGRI-EBI GWAS Catalog (v1.0.2-associtions_e104, released on 22 October 2021) were downloaded from https://www.ebi.ac.uk/gwas/docs/file-downloads/. Our results in the study are presented in our online platform at http://www.bigc.online/BrainMR/.

Code availability

The actual code used to run the analyses described in this study is available at our online platform (http://www.bigc.online/BrainMR/Browse/1.2-Code.html). All software packages we used in the study are publicly available, and the download links are included in the Methods.

References

  1. Charlson, F. et al. New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet 394, 240–248 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Disease, G. B. D., Injury, I. & Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).

  3. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Suffren, S., Chauret, M., Nassim, M., Lepore, F. & Maheu, F. S. On a continuum to anxiety disorders: adolescents at parental risk for anxiety show smaller rostral anterior cingulate cortex and insula thickness. J. Affect. Disord. 248, 34–41 (2019).

    Article  PubMed  Google Scholar 

  5. Rimol, L. M. et al. Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biol. Psychiatry 68, 41–50 (2010).

    Article  PubMed  Google Scholar 

  6. Hardan, A. Y., Muddasani, S., Vemulapalli, M., Keshavan, M. S. & Minshew, N. J. An MRI study of increased cortical thickness in autism. Am. J. Psychiatry 163, 1290–1292 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Saricicek, A. et al. Abnormal white matter integrity as a structural endophenotype for bipolar disorder. Psychol. Med. 46, 1547–1558 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Lu, L. H., Zhou, X. J., Keedy, S. K., Reilly, J. L. & Sweeney, J. A. White matter microstructure in untreated first episode bipolar disorder with psychosis: comparison with schizophrenia. Bipolar Disord. 13, 604–613 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. King, J. A. et al. Global cortical thinning in acute anorexia nervosa normalizes following long-term weight restoration. Biol. Psychiatry 77, 624–632 (2015).

    Article  PubMed  Google Scholar 

  10. Ballmaier, M. et al. Hippocampal morphology and distinguishing late-onset from early-onset elderly depression. Am. J. Psychiatry 165, 229–237 (2008).

    Article  PubMed  Google Scholar 

  11. Gilbertson, M. W. et al. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat. Neurosci. 5, 1242–1247 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seidman, L. J. et al. Gray matter alterations in adults with attention-deficit/hyperactivity disorder identified by voxel based morphometry. Biol. Psychiatry 69, 857–866 (2011).

    Article  PubMed  Google Scholar 

  13. Greene, D. J. et al. Brain structure in pediatric Tourette syndrome. Mol. Psychiatry 22, 972–980 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Rus, O. G. et al. Structural alterations in patients with obsessive–compulsive disorder: a surface-based analysis of cortical volume, surface area and thickness. J. Psychiatry Neurosci. 42, 395–403 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 24, 737–745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iscan, Z. et al. Test–retest reliability of freesurfer measurements within and between sites: effects of visual approval process. Hum. Brain Mapp. 36, 3472–3485 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nugent, A. C. et al. Automated subcortical segmentation using FIRST: test–retest reliability, interscanner reliability, and comparison to manual segmentation. Hum. Brain Mapp. 34, 2313–2329 (2013).

    Article  PubMed  Google Scholar 

  19. Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Smith, S. M. et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31, 1487–1505 (2006).

    Article  PubMed  Google Scholar 

  21. Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M. F. & Woolrich, M. W. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain. NeuroImage 34, 144–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Watson, H. J. et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat. Genet. 51, 1207–1214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burgess, S., Davies, N. M. & Thompson, S. G. Bias due to participant overlap in two-sample Mendelian randomization. Genet. Epidemiol. 40, 597–608 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burgess, S. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int. J. Epidemiol. 43, 922–929 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61, 1000–1016 (2012).

    Article  PubMed  Google Scholar 

  26. Alexander, A. L., Lee, J. E., Lazar, M. & Field, A. S. Diffusion tensor imaging of the brain. Neurotherapeutics 4, 316–329 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bao, Y., Wang, Y., Wang, W. & Wang, Y. The superior fronto-occipital fasciculus in the human brain revealed by diffusion spectrum imaging tractography: an anatomical reality or a methodological artifact. Front. Neuroanat. 11, 119 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Floresco, S. B. The nucleus accumbens: an interface between cognition, emotion, and action. Annu. Rev. Psychol. 66, 25–52 (2015).

    Article  PubMed  Google Scholar 

  29. Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 46, 1985–1998 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schoorl, J. et al. Grey and white matter associations of psychotic-like experiences in a general population sample (UK Biobank). Transl. Psychiatry 11, 21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sui, J. et al. In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia. Biol. Psychiatry 78, 794–804 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Friedman, J. I. et al. Diffusion tensor imaging findings in first-episode and chronic schizophrenia patients. Am. J. Psychiatry 165, 1024–1032 (2008).

    Article  PubMed  Google Scholar 

  33. Wang, Z. et al. The integrity of the white matter in first-episode schizophrenia patients with auditory verbal hallucinations: an atlas-based DTI analysis. Psychiatry Res. Neuroimaging 315, 111328 (2021).

    Article  PubMed  Google Scholar 

  34. Wang, Y. et al. Altered structural connectivity and cytokine levels in schizophrenia and genetic high-risk individuals: associations with disease states and vulnerability. Schizophr. Res. 223, 158–165 (2020).

    Article  PubMed  Google Scholar 

  35. de Zwarte, S. M. C. et al. The association between familial risk and brain abnormalities is disease specific: an ENIGMA-Relatives study of schizophrenia and bipolar disorder. Biol. Psychiatry 86, 545–556 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brugger, S. P. & Howes, O. D. Heterogeneity and homogeneity of regional brain structure in schizophrenia: a meta-analysis. JAMA Psychiatry 74, 1104–1111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Miles, A. E., Kaplan, A. S., French, L. & Voineskos, A. N. White matter microstructure in women with acute and remitted anorexia nervosa: an exploratory neuroimaging study. Brain Imaging Behav. 14, 2429–2437 (2020).

    Article  PubMed  Google Scholar 

  38. Frank, G. K., Shott, M. E., Hagman, J. O. & Yang, T. T. Localized brain volume and white matter integrity alterations in adolescent anorexia nervosa. J. Am. Acad. Child Adolesc. Psychiatry 52, 1066–1075 e1065 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Frieling, H. et al. Microstructural abnormalities of the posterior thalamic radiation and the mediodorsal thalamic nuclei in females with anorexia nervosa—a voxel based diffusion tensor imaging (DTI) study. J. Psychiatr. Res. 46, 1237–1242 (2012).

    Article  PubMed  Google Scholar 

  40. Vogel, K. et al. White matter microstructural changes in adolescent anorexia nervosa including an exploratory longitudinal study. NeuroImage Clin. 11, 614–621 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ohi, K. et al. Differences in subcortical brain volumes among patients with schizophrenia and bipolar disorder and healthy controls. J. Psychiatry Neurosci. 47, E77–E85 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dickstein, D. P. et al. Frontotemporal alterations in pediatric bipolar disorder: results of a voxel-based morphometry study. Arch. Gen. Psychiatry 62, 734–741 (2005).

    Article  PubMed  Google Scholar 

  43. Nenadic, I., Yotter, R. A., Sauer, H. & Gaser, C. Cortical surface complexity in frontal and temporal areas varies across subgroups of schizophrenia. Hum. Brain Mapp. 35, 1691–1699 (2014).

    Article  PubMed  Google Scholar 

  44. Francis, A. N. et al. Alterations in brain structures underlying language function in young adults at high familial risk for schizophrenia. Schizophr. Res. 141, 65–71 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Forkel, S. J. et al. The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex 56, 73–84 (2014).

    Article  PubMed  Google Scholar 

  46. Kelly, S. et al. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol. Psychiatry 23, 1261–1269 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Gaser, C., Nenadic, I., Buchsbaum, B. R., Hazlett, E. A. & Buchsbaum, M. S. Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex. Am. J. Psychiatry 161, 154–156 (2004).

    Article  PubMed  Google Scholar 

  48. Duy, P. Q. et al. Brain ventricles as windows into brain development and disease. Neuron 110, 12–15 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pulvermuller, F. & Fadiga, L. Active perception: sensorimotor circuits as a cortical basis for language. Nat. Rev. Neurosci. 11, 351–360 (2010).

    Article  PubMed  Google Scholar 

  51. Treasure, J. et al. Anorexia nervosa. Nat. Rev. Dis. Prim. 1, 15074 (2015).

    Article  PubMed  Google Scholar 

  52. Onoda, K., Ikeda, M., Sekine, H. & Ogawa, H. Clinical study of central taste disorders and discussion of the central gustatory pathway. J. Neurol. 259, 261–266 (2012).

    Article  PubMed  Google Scholar 

  53. McIntyre, R. S. et al. Bipolar disorders. Lancet 396, 1841–1856 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Sharma, A. et al. Common dimensional reward deficits across mood and psychotic disorders: a connectome-wide association study. Am. J. Psychiatry 174, 657–666 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ahn, M. S. et al. Anatomic brain magnetic resonance imaging of the basal ganglia in pediatric bipolar disorder. J. Affect Disord. 104, 147–154 (2007).

    Article  PubMed  Google Scholar 

  56. Hibar, D. P. et al. Subcortical volumetric abnormalities in bipolar disorder. Mol. Psychiatry 21, 1710–1716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shen, X. et al. A phenome-wide association and Mendelian Rrandomisation study of polygenic risk for depression in UK Biobank. Nat. Commun. 11, 2301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pierce, B. L. & Burgess, S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am. J. Epidemiol. 178, 1177–1184 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Davies, N. M., Holmes, M. V. & Davey Smith, G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. Brit. Med. J. 362, k601 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 166, 400–424 (2018).

    Article  PubMed  Google Scholar 

  61. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol. Psychiatry 21, 1391–1399 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. International Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS). Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol. Psychiatry 23, 1181–1188 (2018).

  67. Gelernter, J. et al. Genome-wide association study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US veterans. Nat. Neurosci. 22, 1394–1401 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yu, D. et al. Interrogating the genetic determinants of Tourette’s syndrome and other tic disorders through genome-wide association studies. Am. J. Psychiatry 176, 217–227 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).

  70. Hartwig, F. P., Davies, N. M., Hemani, G. & Davey Smith, G. Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int. J. Epidemiol. 45, 1717–1726 (2016).

    Article  PubMed  Google Scholar 

  71. Price, A. L. et al. Long-range LD can confound genome scans in admixed populations. Am. J. Hum. Genet. 83, 132–135 (2008). author reply 135-139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zheng, J. et al. Recent developments in Mendelian randomization studies. Curr. Epidemiol. Rep. 4, 330–345 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kraft, P., Chen, H. & Lindstrom, S. The use of genetic correlation and Mendelian randomization studies to increase our understanding of relationships between complex traits. Curr. Epidemiol. Rep. 7, 104–112 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McLaughlin, K. A., Costello, E. J., Leblanc, W., Sampson, N. A. & Kessler, R. C. Socioeconomic status and adolescent mental disorders. Am. J. Public Health 102, 1742–1750 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hjorthoj, C. et al. Association between alcohol and substance use disorders and all-cause and cause-specific mortality in schizophrenia, bipolar disorder, and unipolar depression: a nationwide, prospective, register-based study. Lancet Psychiatry 2, 801–808 (2015).

    Article  PubMed  Google Scholar 

  78. Gurillo, P., Jauhar, S., Murray, R. M. & MacCabe, J. H. Does tobacco use cause psychosis? Systematic review and meta-analysis. Lancet Psychiatry 2, 718–725 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Noble, K. G. et al. Family income, parental education and brain structure in children and adolescents. Nat. Neurosci. 18, 773–778 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, L. et al. Lower regional grey matter in alcohol use disorders: evidence from a voxel-based meta-analysis. BMC Psychiatry 21, 247 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Schneider, C. E. et al. Smoking status as a potential confounder in the study of brain structure in schizophrenia. J. Psychiatr. Res. 50, 84–91 (2014).

    Article  PubMed  Google Scholar 

  82. Kamat, M. A. et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 35, 4851–4853 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Buniello, A. et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale data. Nat. Genet. 51, 1749–1755 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Walters, R. K. et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat. Neurosci. 21, 1656–1669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet. 42, 441–447 (2010).

  88. Greco, M. F., Minelli, C., Sheehan, N. A. & Thompson, J. R. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat. Med. 34, 2926–2940 (2015).

    Article  Google Scholar 

  89. Rucker, G., Schwarzer, G., Carpenter, J. R., Binder, H. & Schumacher, M. Treatment-effect estimates adjusted for small-study effects via a limit meta-analysis. Biostatistics 12, 122–142 (2011).

    Article  PubMed  Google Scholar 

  90. Bowden, J. et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the radial plot and radial regression. Int. J. Epidemiol. 47, 2100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Burgess, S., Thompson, S. G. & CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 40, 755–764 (2011).

    Article  PubMed  Google Scholar 

  92. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhao, Q. Y., Wang, J. S., Hemani, G., Bowden, J. & Small, D. S. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. Ann. Stat. 48, 1742–1769 (2020).

    Article  Google Scholar 

  94. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wald, A. The fitting of straight lines if both variables are subject to error. Ann. Math. Stat. 11, 284–300 (1940).

    Article  Google Scholar 

  97. Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. VanderWeele, T. J., Tchetgen Tchetgen, E. J., Cornelis, M. & Kraft, P. Methodological challenges in Mendelian randomization. Epidemiology 25, 427–435 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Skrivankova, V. W. et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement. JAMA 326, 1614–1621 (2021).

    Article  PubMed  Google Scholar 

  100. Burgess, S. et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res 4, 186 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (grant numbers 32170616 (T.-L.Y.), 82170896 (Y.G.), 31970569 (Y.G.) and 82101601 (S.Y.)), Science Fund for Distinguished Young Scholars of Shaanxi Province (grant number 2021JC-02 (T.-L.Y.)), Innovation Capability Support Program of Shaanxi Province (grant number 2022TD-44 (T.-L.Y.)) and the Fundamental Research Funds for the Central Universities (T.-L.Y.). This work was also supported by the High-Performance Computing Platform and Instrument Analysis Center of Xi’an Jiaotong University. We would like to thank the UK Biobank and Cross-Disorder Group of the Psychiatric Genomics Consortium for the GWAS summary data of IDPs and psychiatric disorders. We also thank the US Million Veteran Program and dbGaP. The GWAS summary data of posttraumatic stress disorder that we used are available from the dbGaP database under dbGaP accession number phs001672.v1.p1. We thank the UK Biobank Resource under application number 46387.

Author information

Authors and Affiliations

Authors

Contributions

J.G. conducted this project and wrote the manuscript. K.Y. built the database website and drew the figures. S.-S.D. and Y.G. revised the manuscript. S.Y. applied for the UK Biobank data and offered some advice. Y.R. and H.W. drew the figures and collected materials for the online database. K.Z. and F.J. summarized the UK Biobank data. Y.-X.C. applied for the dbGaP data. T.-L.Y. and Y.G. conceived and supervised this project.

Corresponding authors

Correspondence to Yan Guo or Tie-Lin Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Baptiste Couvy-Duchesne, Miguel Renteria, and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and note for the GWAS datasets.

Reporting Summary

Supplementary Table

Supplementary Tables 1–15.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Yu, K., Dong, SS. et al. Mendelian randomization analyses support causal relationships between brain imaging-derived phenotypes and risk of psychiatric disorders. Nat Neurosci 25, 1519–1527 (2022). https://doi.org/10.1038/s41593-022-01174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-022-01174-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing