Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex

Abstract

Frontotemporal dementia (FTD) is the second most prevalent form of early-onset dementia, affecting predominantly frontal and temporal cerebral lobes. Heterozygous mutations in the progranulin gene (GRN) cause autosomal-dominant FTD (FTD-GRN), associated with TDP-43 inclusions, neuronal loss, axonal degeneration and gliosis, but FTD-GRN pathogenesis is largely unresolved. Here we report single-nucleus RNA sequencing of microglia, astrocytes and the neurovasculature from frontal, temporal and occipital cortical tissue from control and FTD-GRN brains. We show that fibroblast and mesenchymal cell numbers were enriched in FTD-GRN, and we identified disease-associated subtypes of astrocytes and endothelial cells. Expression of gene modules associated with blood–brain barrier (BBB) dysfunction was significantly enriched in FTD-GRN endothelial cells. The vasculature supportive function and capillary coverage by pericytes was reduced in FTD-GRN tissue, with increased and hypertrophic vascularization and an enrichment of perivascular T cells. Our results indicate a perturbed BBB and suggest that the neurovascular unit is severely affected in FTD-GRN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow of the experiment and sample validation.
Fig. 2: snRNA-seq of NEUNnegOLIG2neg nuclei.
Fig. 3: Altered cell–cell interaction network in the FC of FTD-GRN donors.
Fig. 4: Microglia are only mildly affected in FTD-GRN brains.
Fig. 5: Astrocytes are severely affected in the frontal and temporal cortices of FTD-GRN donors.
Fig. 6: Endothelial cells are affected and express BBB dysfunction gene modules in FTD-GRN.
Fig. 7: Loss of functional pericytes in FTD-GRN frontal and temporal cortices.

Similar content being viewed by others

Data availability

The data generated in this study are available through the Gene Expression Omnibus at https://www.ncbi.nlm.nih.gov/geo with accession number GSE163122. Spatial transcriptomics data were derived from 10x Genomics (https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Brain_Section_1). snRNA-seq data from Grn−/− mouse thalami from Zhang et al.32 were downloaded from the Sequence Read Archive under accession number PRJNA507872.

References

  1. Meeter, L. H., Kaat, L. D., Rohrer, J. D. & van Swieten, J. C. Imaging and fluid biomarkers in frontotemporal dementia. Nat. Rev. Neurol. 13, 406–419 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Mackenzie, I. R. A. & Neumann, M. Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. J. Neurochem. 138, 54–70 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Woollacott, I. O. C. & Rohrer, J. D. The clinical spectrum of sporadic and familial forms of frontotemporal dementia. J. Neurochem. 138, 6–31 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Eguchi, R., Nakano, T. & Wakabayashi, I. Progranulin and granulin-like protein as novel VEGF-independent angiogenic factors derived from human mesothelioma cells. Oncogene 36, 714–722 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. van Swieten, J. C. & Heutink, P. Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia. Lancet Neurol. 7, 965–974 (2008).

    Article  PubMed  CAS  Google Scholar 

  8. Kao, A. W., McKay, A., Singh, P. P., Brunet, A. & Huang, E. J. Progranulin, lysosomal regulation and neurodegenerative disease. Nat. Rev. Neurosci. 18, 325–333 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bright, F. et al. Neuroinflammation in frontotemporal dementia. Nat. Rev. Neurol. 15, 540–555 (2019).

    Article  PubMed  Google Scholar 

  10. Heller, C. et al. Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 91, 263–270 (2020).

    Article  PubMed  Google Scholar 

  11. Bossù, P. et al. Loss of function mutations in the progranulin gene are related to pro-inflammatory cytokine dysregulation in frontotemporal lobar degeneration patients. J. Neuroinflammation 8, 65 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yin, F. et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J. Exp. Med. 207, 117–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tanaka, Y., Matsuwaki, T., Yamanouchi, K. & Nishihara, M. Exacerbated inflammatory responses related to activated microglia after traumatic brain injury in progranulin-deficient mice. Neuroscience 231, 49–60 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith, K. R. et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am. J. Hum. Genet. 90, 1102–1107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gerrits, E. et al. Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s disease. Acta Neuropathol. 141, 1–16 (2021).

    Article  CAS  Google Scholar 

  17. Benussi, L., Binetti, G. & Ghidoni, R. Loss of neuroprotective factors in neurodegenerative dementias: the end or the starting point? Front. Neurosci. 11, 672 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tann, J. Y., Wong, L., Sajikumar, S. & Ibáñez, C. F. Abnormal TDP-43 function impairs activity-dependent BDNF secretion, synaptic plasticity, and cognitive behavior through altered Sortilin splicing. EMBO J. 38, e100989 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ishii, Y. et al. Mouse brains deficient in neuronal PDGF receptor-β develop normally but are vulnerable to injury. J. Neurochem. 98, 588–600 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, X. et al. Slit2 regulates the dispersal of oligodendrocyte precursor cells via Fyn/RhoA signaling. J. Biol. Chem. 287, 17503–17516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).

    Article  PubMed  CAS  Google Scholar 

  23. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Stoffels, J. M. J. et al. Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain 136, 116–131 (2013).

    Article  PubMed  Google Scholar 

  25. Yamazaki, Y. et al. Selective loss of cortical endothelial tight junction proteins during Alzheimer’s disease progression. Brain 142, 1077–1092 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haarmann, A. et al. Human brain endothelial CXCR2 is inflammation-inducible and mediates CXCL5- and CXCL8-triggered paraendothelial barrier breakdown. Int. J. Mol. Sci. 20, 602 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  28. Liu, K. K. Y. & Dorovini-Zis, K. Regulation of CXCL12 and CXCR4 expression by human brain endothelial cells and their role in CD4+ and CD8+ T cell adhesion and transendothelial migration. J. Neuroimmunol. 215, 49–64 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Kniewallner, K. M., Grimm, N. & Humpel, C. Platelet-derived nerve growth factor supports the survival of cholinergic neurons in organotypic rat brain slices. Neurosci. Lett. 574, 64–69 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cantarella, G. et al. Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J. 16, 1307–1309 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Fernández-Klett, F. & Priller, J. The fibrotic scar in neurological disorders. Brain Pathol. 24, 404–413 (2014).

  32. Zhang, J. et al. Neurotoxic microglia promote TDP-43 proteinopathy in progranulin deficiency. Nature 588, 459–465 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Filiano, A. J. et al. Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. J. Neurosci. 33, 5352–5361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hong, Y., Yan, W., Chen, S., Sun, C. & Zhang, J. The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol. Sin. 31, 1421–1430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hasel, P., Rose, I. V. L., Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 24, 1475–1487 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Michael, B. D. et al. Astrocyte- and neuron-derived CXCL1 drives neutrophil transmigration and blood–brain barrier permeability in viral encephalitis. Cell Rep. 32, 108150 (2020).

  37. Füchtbauer, L. et al. Angiotensin II type 1 receptor (AT1) signaling in astrocytes regulates synaptic degeneration-induced leukocyte entry to the central nervous system. Brain Behav. Immun. 25, 897–904 (2010).

  38. Hou, S. T. et al. Semaphorin3A elevates vascular permeability and contributes to cerebral ischemia-induced brain damage. Sci. Rep. 5, 7890 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jakovcevski, I., Miljkovic, D., Schachner, M. & Andjus, P. R. Tenascins and inflammation in disorders of the nervous system. Amino Acids 44, 1115–1127 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Südhof, T. C. Synaptic neurexin complexes: A molecular code for the logic of neural circuits. Cell 171, 745–769 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hardwick, S. A. et al. Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01231-3 (2022).

  42. Mäe, M. A. et al. Single-cell analysis of blood–brain barrier response to pericyte loss. Circ. Res. 128, e46–e62 (2021).

    Article  PubMed  CAS  Google Scholar 

  43. Ma, S.-C. et al. Claudin-5 regulates blood–brain barrier permeability by modifying brain microvascular endothelial cell proliferation, migration, and adhesion to prevent lung cancer metastasis. CNS Neurosci. Ther. 23, 947–960 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumar, P., Ning, Y., Polverini, P. J. & Kumar, P. Endothelial cells expressing Bcl-2 promote tumor metastasis by enhancing tumor angiogenesis, blood vessel leakiness and tumor invasion. Lab. Invest. 88, 740–749 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Bussolati, B. et al. Neural-cell adhesion molecule (NCAM) expression by immature and tumor-derived endothelial cells favors cell organization into capillary-like structures. Exp. Cell. Res. 312, 913–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Derada Troletti, C., de Goede, P., Kamermans, A. & de Vries, H. E. Molecular alterations of the blood–brain barrier under inflammatory conditions: the role of endothelial to mesenchymal transition. Biochim. Biophys. Acta 1862, 452–460 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Munji, R. N. et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood–brain barrier dysfunction module. Nat. Neurosci. 22, 1892–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Propson, N. E., Roy, E. R., Litvinchuk, A., Köhl, J. & Zheng, H. Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging. J. Clin. Invest. 131, e140966 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  50. Chappell, J. C., Mouillesseaux, K. P. & Bautch, V. L. Flt-1 (vascular endothelial growth factor receptor-1) is essential for the vascular endothelial growth factor–Notch feedback loop during angiogenesis. Arterioscler Thromb. Vasc. Biol. 33, 1952–1959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, C.-H. et al. Increased expression of vascular endothelial growth factor in neo-vascularized canine brain tissue. Can. J. Vet. Res. 76, 62–68 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ek Olofsson, H. & Englund, E. A cortical microvascular structure in vascular dementia, Alzheimer’s disease, frontotemporal lobar degeneration and nondemented controls: a sign of angiogenesis due to brain ischaemia? Neuropathol. Appl. Neurobiol. 45, 557–569 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lendahl, U., Nilsson, P. & Betsholtz, C. Emerging links between cerebrovascular and neurodegenerative diseases—a special role for pericytes. EMBO Rep. 20, e48070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eilken, H. M. et al. Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1. Nat. Commun. 8, 1574 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Török, O. et al. Pericytes regulate vascular immune homeostasis in the CNS. Proc. Natl Acad. Sci. USA 118, e2016587118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Menzel, L. et al. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia 65, 278–292 (2017).

    Article  PubMed  Google Scholar 

  57. Ward, M. E. et al. Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Sci. Transl. Med. 9, eaah5642 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Månberg, A. et al. Altered perivascular fibroblast activity precedes ALS disease onset. Nat. Med. 27, 640–646 (2021).

    Article  PubMed  CAS  Google Scholar 

  59. Abramzon, Y. A., Fratta, P., Traynor, B. J. & Chia, R. The overlapping genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Front. Neurosci. 14, 42 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Eriksen, J. L. & Mackenzie, I. R. A. Progranulin: normal function and role in neurodegeneration. J. Neurochem. 104, 187–197 (2008).

  61. Zhou, M. et al. Progranulin protects against renal ischemia/reperfusion injury in mice. Kidney Int. 87, 918–929 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Piscopo, P. et al. Reduced miR-659-3p levels correlate with progranulin increase in hypoxic conditions: implications for frontotemporal dementia. Front. Mol. Neurosci. 9, 31 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kanazawa, M. et al. Multiple therapeutic effects of progranulin on experimental acute ischaemic stroke. Brain 138, 1932–1948 (2015).

    Article  PubMed  Google Scholar 

  64. Tangkeangsirisin, W. & Serrero, G. PC cell-derived growth factor (PCDGF/GP88, progranulin) stimulates migration, invasiveness and VEGF expression in breast cancer cells. Carcinogenesis 25, 1587–1592 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Gacche, R. N. Compensatory angiogenesis and tumor refractoriness. Oncogenesis 4, e153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Perez-Pinera, P., Chang, Y. & Deuel, T. F. Pleiotrophin, a multifunctional tumor promoter through induction of tumor angiogenesis, remodeling of the tumor microenvironment, and activation of stromal fibroblasts. Cell Cycle 6, 2877–2883 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, L. & Dimberg, A. Pleiotrophin is a driver of vascular abnormalization in glioblastoma. Mol. Cell. Oncol. 3, e1141087 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Dorrier, C. E. et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat. Neurosci. 24, 234–244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hansson, O. et al. CSF placental growth factor—a novel candidate biomarker of frontotemporal dementia. Ann. Clin. Transl. Neurol. 6, 863–872 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Eriksson, A. et al. Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell 1, 99–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Bellik, L., Vinci, M. C., Filippi, S., Ledda, F. & Parenti, A. Intracellular pathways triggered by the selective FLT-1-agonist placental growth factor in vascular smooth muscle cells exposed to hypoxia. Br. J. Pharmacol. 146, 568–75 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. De Falco, S. The discovery of placenta growth factor and its biological activity. Exp. Mol. Med. 44, 1–9 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Maes, C. et al. Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair. J. Clin. Invest. 116, 1230–1242 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chakraborty, A. et al. Angiopoietin like-4 as a novel vascular mediator in capillary cerebral amyloid angiopathy. Brain 141, 3377–3388 (2018).

    Article  PubMed  Google Scholar 

  75. Riku, Y. et al. Increased prevalence of granulovacuolar degeneration in C9orf72 mutation. Acta Neuropathol. 138, 783–793 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Seilhean, D. et al. Fronto-temporal lobar degeneration: neuropathology in 60 cases. J. Neural Transm. 118, 753–764 (2011).

    Article  PubMed  Google Scholar 

  77. Gerrits, E., Heng, Y., Boddeke, E. W. G. M. & Eggen, B. J. L. Transcriptional profiling of microglia; current state of the art and future perspectives. Glia 68, 740–755 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zhang, Y., Parmigiani, G. & Johnson, W. E. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genomics Bioinform. 2, lqaa078 (2020).

    Article  CAS  Google Scholar 

  84. Xi, S. et al. ABACUS: a flexible UMI counter that leverages intronic reads for single-nucleus RNAseq analysis. Preprint at https://www.biorxiv.org/content/10.1101/2020.11.13.381624v1 (2020).

  85. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Irwin, D. J. et al. Semi-automated digital image analysis of Pick’s disease and TDP-43 proteinopathy. J. Histochem. Cytochem. 64, 54–66 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Giannini, L. A. A. et al. Empiric methods to account for pre-analytical variability in digital histopathology in frontotemporal lobar degeneration. Front. Neurosci. 13, 682 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Irwin, D. J. et al. Asymmetry of post-mortem neuropathology in behavioural-variant frontotemporal dementia. Brain 141, 288–301 (2018).

    Article  PubMed  Google Scholar 

  92. Giannini, L. A. A. et al. Divergent patterns of TDP-43 and tau pathologies in primary progressive aphasia. Ann. Neurol. 85, 630–643 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank G. Mesander, J. Teunis and T. Bijma from the flow cytometry unit of the University Medical Center Groningen for sorting of the nuclei; L. Hesse and L. Apperloo for use of the 10x Genomics Chromium system; M. Meijer and H. van Weering for microscopy; J. Mulder for the WDR49 antibody; W. Baron and J. Dallinga-de Jonge for materials; the Research Sequencing Facility of the University Medical Center Groningen for sequencing; and the Center for Information Technology of the University of Groningen for their support and for providing access to the Peregrine high-performance computing cluster. We would like to thank the Netherlands Brain Bank and S. Leclère-Turbant of the Neuro-CEB brain bank for providing brain tissues. We would like to thank D. J. Irwin (University of Pennsylvania) for sharing the digital analysis protocol for pathology quantification using the open-source QuPath software. Several authors of this publication are members of the European Reference Network for Rare Neurological Diseases (project ID 739510). E.G. was funded by the Graduate School of Medical Sciences of the University of Groningen. I.L.B. received funding from the ‘Investissements d’avenir ANR-11INBS-0011’ and the ‘Programme Hospitalier de Recherche Clinique FTLD-exome’ (promotion AP-HP). This study was supported by ZonMw (project no. 733050513), the Bluefield Project to Cure Frontotemporal Dementia and Alzheimer Nederland (WE.03-2019-09). This project was co-financed by the Ministry of Economic Affairs and Climate Policy by means of the PPP allowance made available by the Top Sector Life Sciences & Health to stimulate public–private partnerships. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

J.V.S. and B.J.L.E. conceived the study. E.G. and N.B. performed the RNA sequencing experiments. E.G. analysed and visualized the RNA sequencing data and wrote the manuscript. E.G., L.A.A.G., N.B., S.M., A.K., H.E.D.V., G.K. and H.S. performed and/or analysed immunohistochemistry. N.B. performed RT–qPCR experiments. L.A.A.G., S.M., I.L.B., D.S., H.S. and J.V.S. provided tissue collection and clinical information. H.S. and J.V.S. supervised L.A.A.G. B.J.L.E. and E.W.G.M. supervised E.G. J.V.S. and B.J.L.E. provided resources. All authors contributed to project design, organization of the experiments, interpretation of results and writing of the manuscript.

Corresponding author

Correspondence to Bart J. L. Eggen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 FANS sorting strategy and tissue validation.

(a) Fluorescent activated nuclear sorting (FANS). The DAPIpos nuclei population is segregated into three groups and these populations were collected separately: NEUNposOLIG2neg (neurons), NEUNnegOLIG2pos (oligodendrocyte lineage), NEUNnegOLIG2neg (other CNS cells). (b) Representative images of TDP43 IHC across the cortex. Scale bar is 250 μm. (c) Quantification of neuronal loss in Nissl staining per sample. Lines depict mean per group. Circles depict individual samples. Statistical analysis between CTR and FTD-GRN samples for each brain region was performed with unpaired two-samples Wilcoxon test. *:p < 0.05; **: p < 0.01; ***:p < 0.001. CTR = Control; FTD = Frontotemporal Dementia; FC = Frontal Cortex; TC = Temporal Cortex; OC = Occipital Cortex.

Extended Data Fig. 2 Bulk RNAseq neurons, OPCs/oligodendrocytes.

(a) Volcano plots depicting logFC (x-axis) versus -log(FDR) (x-axis) values per gene for OC versus FC in CTR and FTD-GRN separately. DEGs are defined as p < 0.05 and abs(logFC) > 1. The number of DEGs is indicated in the plot. (b) Fourway plot depicting log fold changes of FC versus OC in CTR (x-axis) and in FTD-GRN (y-axis). Green circles are DEGs between FC and OC in both CTR and FTD-GRN (region-associated DEGs). Purple circles are DEGs exclusively enriched in FTD-GRN-FC (enriched disease-associated). Yellow circles are DEGs exclusively depleted in FTD-GRN-FC (depleted disease-associated). (c) Principal component analysis of OLIG2pos bulk RNAseq. Colors depict brain regions, filled-circles are from CTR and open-circles are from FTD-GRN. (d) Barplot depicting imputed fractions of cell types in OLIG2pos nuclei samples. (e) Same PCA plot as in c), color scale depicts imputed OPC fraction in deconvolution analysis. (f) Fourway plot depicting log fold changes of FC versus OC in CTR (x-axis) and in FTD-GRN (y-axis). Green circles are DEGs between FC and OC in both CTR and FTD-GRN (region-associated DEGs). Purple circles are DEGs exclusively enriched in FTD-GRN-FC (enriched disease-associated). Yellow circles are DEGs exclusively depleted in FTD-GRN-FC (depleted disease-associated). (g) Barplot depicting imputed fractions of cell types in NEUNpos samples. OPC = Oligodendrocyte Progenitor Cell; FC = Frontal Cortex; TC = Temporal Cortex; OC = Occipital Cortex; CTR = Control; FTD = Frontotemporal Dementia. GM = Grey Matter; WM = White Matter; L1 = Layer 1; CAMs = CNS-associated Macrophages; SMCs = Smooth Muscle Cells. PC = Principal Component. DEG = Differentially Expressed Gene.

Extended Data Fig. 3 Vascular cell type identification and validation.

(a) UMAPs and violin plots depicting module scores of cell type specific mouse gene sets from Vanlandewijck et al. (b) Dot plots per group depicting RT-qPCR results from COL1A1 (fibroblasts) and PHLDB2 (mesenchymal) on total brain tissue,. Lines indicates mean per group. Circles depict individual tissue samples. CTR and FTD-GRN samples for each brain region was analyzed with an unpaired two-samples Wilcoxon test (c) Dot plot depicting top 10 most significantly enriched GO terms on marker genes of each cell type. (d) Heatmap depicting top 15 most enriched genes per cell type. Colors indicate scaled gene expression levels. FC = Frontal Cortex; TC = Temporal Cortex; OC = Occipital Cortex, SMC = Smooth Muscle Cell; GO = Gene Ontology; CTR = Control; FTD = Frontotemporal Dementia *: p < 0.05; **: p < 0.01; ***: p < 0.001.

Extended Data Fig. 4 Hierarchy plots depicting selected differential signaling pathways between CTR and FTD-GRN frontal cortex.

(a-d) Hierarchy plot depicting TENASCIN (a), NRXN (b), COMPLEMENT (c) and PTN (d) signaling network pathways across all cell types for each group. Circle sizes are proportional to the number of cells in each group. Edge width is proportional to communication probability.

Extended Data Fig. 5 No clear increase in microglia numbers and slightly altered morphological changes in situ in FTD-GRN brains and statistical analysis of subcluster distributions.

(a) Representative images of IBA1 staining in the grey matter of CTR and FTD-GRN samples in FC, TC and OC. Scale bar is 100 μm. (b) Quantification of IBA1 staining. Top: Number of microglia per mm2; Bottom: Fraction IBA1-positive pixels. Lines depict mean per group. Circles depict individual samples. Statistical analysis between CTR and FTD-GRN samples for each brain region was performed with an unpaired two-samples Wilcoxon test. (c) Microglia subcluster distribution per group. (d) Violin plots per sample depicting module scores of a Grn-/- microglia enriched geneset from Zhang et al. (2020). Line depicts mean of all CTR samples. (e) GM-Astrocytes subcluster distribution per group. (f) Endothelial cells subcluster distribution per group. (g) Pericytes subcluster distribution per group. Statistical analysis was performed with a Chi-squared test on the group averages. Abbreviations: CTR = Control; FTD = Frontotemporal Dementia; FC = Frontal Cortex; TC = Temporal Cortex; OC = Occipital Cortex. Chi squared test *: p ≤0.05; **: p ≤0.01; ***: p ≤0.001.

Extended Data Fig. 6 Gene ontology analysis GM-Astrocytes.

(a) Dot plot of top 10 most significantly enriched GO terms of marker genes of each GM-Astrocyte sub cluster. (b) Representative GFAP images of the FC of a CTR donor and FC and TC of FTD-GRN donor. Scale bar is 50 μm. Dot plot of number of GFAPpos cells/0.5 mm2/group. Lines depicts mean/group, circles individual samples. CTR and FTD-GRN samples for each brain region were analyzed with an unpaired two-samples Wilcoxon test. (c) Dot plot of % GFAP-positive area per group. Lines depicts mean/group, circles individual samples. CTR and FTD-GRN samples for each brain region were analyzed with an unpaired two-samples Wilcoxon test. (d) Representative grey matter images for astrocyte marker GFAP. Dashed line shows grey-white matter junction. Scale bar is 250 μm. (e) Correlogram depicting Pearson correlations between different IHC measurements. (f) Dot plot depicting ratio of perivascular AQP4 area over vessel area per vessel per group. Lines depict mean per group. Circles depict individual samples. Statistical analysis between CTR and FTD-GRN samples for each brain region was performed with an unpaired two-samples Wilcoxon test. (g) Representative images of multiplexed IHC for proteins DAPI (blue), laminin (red), UAE-1 (ULEX; green) and AQP4 (white). Scale bar is 10 μm. CTR = Control; FTD = Frontotemporal Dementia; FC = Frontal Cortex; TC = Temporal Cortex; OC = Occipital Cortex; GM = Grey Matter. *: p≤0.05; **: p≤0.01; ***: p≤0.001.

Extended Data Fig. 7 WDR49 immunohistochemistry.

Representative immunohistochemical images of WDR49 in grey matter tissue of 4 CTR and 13 FTD donors. Circles depict clusters of WDR49pos cells. Each image is a different donor. Scale bar is 500 μm.

Extended Data Fig. 8 Immunofluorescent staining for WDR49 and GFAP.

Representative images of fluorescent double labelling of WDR49 and GFAP in FTD-GRN frontal cortex. Scale bar is 50 μm in (a) and 10 μm in (b).

Extended Data Fig. 9 Trajectory analysis of endothelial cell zonation, and neovascularization and inflammation in FTD-GRN.

(a) UMAPs depicting module scores for endothelial cell zonation genesets derived from Vanlandewijck et al. (2018) and trajectory analysis on zonation genes. (b) Dot plot depicting number of CLDN5pos and LNpos fragments per group per region. Lines indicate mean per group. Circles depict individual samples. Statistical analysis between CTR and FTD-GRN samples for each brain region was performed with unpaired two-samples Wilcoxon test. (c) Images of structures suggestive for neovascularization and inflammation in CLDN5 staining of FTD-GRN frontal cortex. Scale bar is 100 μm. (d) CLDN5/FN staining of raspberry and neovascularization structure in FTD-GRN frontal cortex. Nuclei are depicted in grey, CLDN5 in cyan and FN in magenta. Scale bar is 50 μm. (e) Dot plots depicting RT-qPCR result for CD31 on total brain tissue. Lines indicate mean per group. Circles depict individual samples. Statistical analysis between CTR and FTD-GRN samples for each brain region was performed with unpaired two-samples Wilcoxon test. Abbreviations: CTR = Control; FTD = Frontotemporal Dementia; FC = Frontal Cortex; TC = Temporal Cortex; OC = Occipital Cortex; CLDN5 = Claudin 5; LN = Laminin. *: p ≤0.05; **: p ≤0.01; ***: p ≤0.001.

Extended Data Fig. 10 Single-nucleus RNA sequencing of nuclei from Grn−/− mouse thalami.

(a) UMAP depicting 175,884 nuclei from 38 thalami from both WT and Grn−/− mice across 5 ages. Colors depict cell type clusters resulting from unsupervised (sub)clustering analysis. (b) Correlogram depicting correlations of gene expression profiles between cell types. Cell types are ordered by hierarchical clustering depicted on the left side. (c) Dotplot depicting representative marker genes for each cell type. Color scale depicts average gene expression level, size of the dots depicts fraction of nuclei expressing the gene. (d) Barplots depicting cell type distribution in each group per age. Data points represent individual samples. Bars depict mean, error bars depict standard error. Abbreviations: CAMs = CNS-associated Macrophages; SMCs = Smooth Muscle Cells; OPCs = Oligodendrocyte Progenitor Cells.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and membership list for the Brainbank Neuro-CEB Neuropathology Network

Reporting Summary

Supplementary Table

Table 1. Donor and sample information. Table 2. Disease-associated DEGs between occipital and frontal neuronal and oligodendrocyte/OPC nuclei. Table 3. Differential gene expression between all cell types and subtypes. Table 4. Imputed cell–cell communication. Table 5. Differential gene expression between subclusters within each cell type. Table 6. Antibodies used for IHC/IF. Table 7. RT–qPCR primer information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerrits, E., Giannini, L.A.A., Brouwer, N. et al. Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex. Nat Neurosci 25, 1034–1048 (2022). https://doi.org/10.1038/s41593-022-01124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-022-01124-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing