Review Article | Published:

Optimality and heuristics in perceptual neuroscience

Nature Neurosciencevolume 22pages514523 (2019) | Download Citation

Abstract

The foundation for modern understanding of how we make perceptual decisions about what we see or where to look comes from considering the optimal way to perform these behaviors. While statistical computation is useful for deriving the optimal solution to a perceptual problem, optimality requires perfect knowledge of priors and often complex computation. Accumulating evidence, however, suggests that optimal perceptual goals can be achieved or approximated more simply by human observers using heuristic approaches. Perceptual neuroscientists captivated by optimal explanations of sensory behaviors will fail in their search for the neural circuits and cortical processes that implement an optimal computation whenever that behavior is actually achieved through heuristics. This article provides a cross-disciplinary review of decision-making with the aim of building perceptual theory that uses optimality to set the computational goals for perceptual behavior but, through consideration of ecological, computational, and energetic constraints, incorporates how these optimal goals can be achieved through heuristic approximation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Tversky, A. & Kahneman, D. Judgment under uncertainty: heuristics and biases. Science 185, 1124–1131 (1974).

  2. 2.

    Tversky, A. & Kahneman, D. The framing of decisions and the psychology of choice. Science 211, 453–458 (1981).

  3. 3.

    Swets, J., Tanner, W. P. Jr. & Birdsall, T. G. Decision processes in perception. Psychol. Rev. 68, 301–340 (1961).

  4. 4.

    Tanner, W. P. Jr. & Swets, J. A. A decision-making theory of visual detection. Psychol. Rev. 61, 401–409 (1954).

  5. 5.

    Green, D. M. Psychoacoustics and detection theory. J. Acoust. Soc. Am. 32, 1189–1203 (1960).

  6. 6.

    Friedman, M. P., Carterette, E. C., Nakatani, L. & Ahumada, A. Comparisons of some learning models for response bias in signal detection. Percept. Psychophys. 3, 5–11 (1968).

  7. 7.

    Nachmias, J. On the psychometric function for contrast detection. Vision Res. 21, 215–223 (1981).

  8. 8.

    Green, D. M. & Moses, F. L. On the equivalence of two recognition measures of short-term memory. Psychol. Bull. 66, 228–234 (1966).

  9. 9.

    Egan, J., Schulman, A. I. & Greenberg, G. Z. Operating characteristics determined by binary decisions and by ratings. J. Acoust. Soc. Am. 31, 768–773 (1959).

  10. 10.

    Burgess, A. Visual signal detection. III. On Bayesian use of prior knowledge and cross correlation. J. Opt. Soc. Am. A 2, 1498–1507 (1985).

  11. 11.

    Pelli, D. G. Uncertainty explains many aspects of visual contrast detection and discrimination. J. Opt. Soc. Am. A 2, 1508–1532 (1985).

  12. 12.

    Palmer, J., Verghese, P. & Pavel, M. The psychophysics of visual search. Vision Res. 40, 1227–1268 (2000).

  13. 13.

    Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E. & Pouget, A. Not noisy, just wrong: the role of suboptimal inference in behavioral variability. Neuron 74, 30–39 (2012).

  14. 14.

    Najemnik, J. & Geisler, W. S. Optimal eye movement strategies in visual search. Nature 434, 387–391 (2005).

  15. 15.

    Eckstein, M. P., Peterson, M. F., Pham, B. T. & Droll, J. A. Statistical decision theory to relate neurons to behavior in the study of covert visual attention. Vision Res. 49, 1097–1128 (2009).

  16. 16.

    Pestilli, F., Carrasco, M., Heeger, D. J. & Gardner, J. L. Attentional enhancement via selection and pooling of early sensory responses in human visual cortex. Neuron 72, 832–846 (2011).

  17. 17.

    Hara, Y. & Gardner, J. L. Encoding of graded changes in spatial specificity of prior cues in human visual cortex. J. Neurophysiol. 112, 2834–2849 (2014).

  18. 18.

    Verghese, P., Kim, Y.-J. & Wade, A. R. Attention selects informative neural populations in human V1. J. Neurosci. 32, 16379–16390 (2012).

  19. 19.

    Lee, D. K., Itti, L., Koch, C. & Braun, J. Attention activates winner-take-all competition among visual filters. Nat. Neurosci. 2, 375–381 (1999).

  20. 20.

    Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002).

  21. 21.

    Seung, H. S. & Sompolinsky, H. Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA 90, 10749–10753 (1993).

  22. 22.

    Scolari, M., Byers, A. & Serences, J. T. Optimal deployment of attentional gain during fine discriminations. J. Neurosci. 32, 7723–7733 (2012).

  23. 23.

    Purushothaman, G. & Bradley, D. C. Neural population code for fine perceptual decisions in area MT. Nat. Neurosci. 8, 99–106 (2005).

  24. 24.

    Graham, N. & Robson, J. G. Summation of very close spatial frequencies: the importance of spatial probability summation. Vision Res. 27, 1997–2007 (1987).

  25. 25.

    Jogan, M. & Stocker, A. A. Signal integration in human visual speed perception. J. Neurosci. 35, 9381–9390 (2015).

  26. 26.

    Newsome, W. T., Britten, K. H. & Movshon, J. A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

  27. 27.

    Tolhurst, D. J., Movshon, J. A. & Dean, A. F. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res. 23, 775–785 (1983).

  28. 28.

    Link, S. W. & Heath, R. A. A sequential theory of psychological discrimination. Psychometrika 40, 77–105 (1975).

  29. 29.

    Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).

  30. 30.

    Roitman, J. D. & Shadlen, M. N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

  31. 31.

    Barlow, H.B. in Sensory Communication (ed. Rosenblith, W.) 217–234 (MIT Press, Cambridge, MA, USA, 1961).

  32. 32.

    Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

  33. 33.

    Yang, Z. & Purves, D. A statistical explanation of visual space. Nat. Neurosci. 6, 632–640 (2003).

  34. 34.

    Girshick, A. R., Landy, M. S. & Simoncelli, E. P. Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nat. Neurosci. 14, 926–932 (2011).

  35. 35.

    Weiss, Y., Simoncelli, E. P. & Adelson, E. H. Motion illusions as optimal percepts. Nat. Neurosci. 5, 598–604 (2002).

  36. 36.

    Vintch, B. & Gardner, J. L. Cortical correlates of human motion perception biases. J. Neurosci. 34, 2592–2604 (2014).

  37. 37.

    Stocker, A. A. & Simoncelli, E. P. Noise characteristics and prior expectations in human visual speed perception. Nat. Neurosci. 9, 578–585 (2006).

  38. 38.

    Sotiropoulos, G., Seitz, A. R. & Seriès, P. Changing expectations about speed alters perceived motion direction. Curr. Biol. 21, R883–R884 (2011).

  39. 39.

    Ganguli, D. & Simoncelli, E. P. Implicit encoding of prior probabilities in optimal neural populations. Adv. Neural Inf. Process. Syst. 23, 658–666 (2010).

  40. 40.

    Atick, J. J. Could information theory provide an ecological theory of sensory processing? Network 3, 213–251 (1992).

  41. 41.

    Brainard, D. H. & Freeman, W. T. Bayesian color constancy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 1393–1411 (1997).

  42. 42.

    Manning, J. R. & Brainard, D. H. Optimal design of photoreceptor mosaics: why we do not see color at night. Vis. Neurosci. 26, 5–19 (2009).

  43. 43.

    Geisler, W. S., Perry, J. S., Super, B. J. & Gallogly, D. P. Edge co-occurrence in natural images predicts contour grouping performance. Vision Res. 41, 711–724 (2001).

  44. 44.

    Lee, T. S. & Mumford, D. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 1434–1448 (2003).

  45. 45.

    Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

  46. 46.

    Gregory, R.L. Concepts and Mechanisms of Perception (Duckworth, London, 1974).

  47. 47.

    Rock, I. The Logic of Perception (MIT Press, Cambridge, MA, USA, 1983).

  48. 48.

    Bowers, J. S. & Davis, C. J. Bayesian just-so stories in psychology and neuroscience. Psychol. Bull. 138, 389–414 (2012).

  49. 49.

    Jones, M. & Love, B. C. Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behav. Brain Sci. 34, 188–231 (2011). 169–188.

  50. 50.

    Marcus, G. F. & Davis, E. How robust are probabilistic models of higher-level cognition? Psychol. Sci. 24, 2351–2360 (2013).

  51. 51.

    Rahnev, D. & Denison, R. N. Suboptimality in perceptual decision making. Behav. Brain Sci. https://doi.org/10.1017/S0140525X18000936 (2018).

  52. 52.

    Geisler, W. S. Contributions of ideal observer theory to vision research. Vision Res. 51, 771–781 (2011).

  53. 53.

    Griffiths, T.L., Chater, N., Norris, D. & Pouget, A. How the Bayesians got their beliefs (and what those beliefs actually are): comment on Bowers and Davis (2012). Psychol. Bull. 138, 415–422 (2012).

  54. 54.

    Goodman, N. D. et al. Relevant and robust: a response to Marcus and Davis (2013). Psychol. Sci. 26, 539–541 (2015).

  55. 55.

    Frank, M. C. Throwing out the Bayesian baby with the optimal bathwater: response to Endress (2013). Cognition 128, 417–423 (2013).

  56. 56.

    Neumann, Von, J. & Morgenstern, O. Theory of Games and Economic Behaviour (Princeton University Press, Princeton, NJ, USA, 1944).

  57. 57.

    Bernoulli, D. Exposition of a new theory on the measurement of risk. Econometrica 22, 23–36 (1954).

  58. 58.

    Allais, M. Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes del’ecole Americaine. Econometrica 21, 503–546 (1953).

  59. 59.

    Kahneman, D. & Tversky, A. Choices, values, and frames. Am. Psychol. 39, 341–350 (1984).

  60. 60.

    Hershey, J. C. & Schoemaker, P. J. H. Risk taking and problem context in the domain of losses: an expected utility analysis. J. Risk Insur. 47, 111–132 (1980).

  61. 61.

    Samuelson, P. A. A note on the pure theory of consumer’s behaviour. Economica 5, 61–71 (1938).

  62. 62.

    Tversky, A. Intransitivity of preferences. Psychol. Rev. 76, 31–48 (1969).

  63. 63.

    Simon, H. A. Rational decision making in business organizations. Am. Econ. Rev. 69, 493–513 (1979).

  64. 64.

    Kahneman, D. & Tversky, A. On the psychology of prediction. Psychol. Rev. 80, 237–251 (1973).

  65. 65.

    Edwards, W. in Judgment under Uncertainty Heuristics and Biases (eds. Kahneman, D., Slovic, P. & Tversky, A.) 359–369 (Cambridge University Press, Cambridge, UK, 1968).

  66. 66.

    Fischhoff, B. & Beyth-Marom, R. Hypothesis evaluation from a Bayesian perspective. Psychol. Rev. 90, 239–260 (1983).

  67. 67.

    Kahneman, D. & TverskyA. Subjective probability: a judgment of representativeness. Cogn. Psychol 3, 430–454 (1972).

  68. 68.

    Tversky, A. & Kahneman, D. Belief in the law of small numbers. Psychol. Bull. 76, 105–110 (1971).

  69. 69.

    Bar-Hillel, M. & Wagenaar, W. A. The perception of randomness. Adv. Appl. Math. 12, 428–454 (1991).

  70. 70.

    Gigerenzer, G. How to make cognitive illusions disappear: beyond ‘heuristics and biases’. Eur. Rev. Soc. Psychol. 2, 83–115 (2011).

  71. 71.

    Hertwig, R. & Gigerenzer, G. The ‘conjunction fallacy’ revisited: how intelligent inferences look like reasoning errors. J. Behav. Decis. Making 12, 275–305 (1999).

  72. 72.

    Birnbaum, M. H. Base rates in Bayesian inference: signal detection analysis of the cab problem. Am. J. Psychol. 96, 85–94 (1983).

  73. 73.

    Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning through probabilistic program induction. Science 350, 1332–1338 (2015).

  74. 74.

    Frank, M. C. & Goodman, N. D. Predicting pragmatic reasoning in language games. Science 336, 998 (2012).

  75. 75.

    Chater, N. & Manning, C. D. Probabilistic models of language processing and acquisition. Trends Cogn. Sci. 10, 335–344 (2006).

  76. 76.

    Kemp, C. & Tenenbaum, J. B. The discovery of structural form. Proc. Natl. Acad. Sci. USA 105, 10687–10692 (2008).

  77. 77.

    Gerstenberg, T. et al. Lucky or clever? From expectations to responsibility judgments. Cognition 177, 122–141 (2018).

  78. 78.

    Feldman, N. H., Griffiths, T. L. & Morgan, J. L. The influence of categories on perception: explaining the perceptual magnet effect as optimal statistical inference. Psychol. Rev. 116, 752–782 (2009).

  79. 79.

    Kemp, C. & Tenenbaum, J. B. Structured statistical models of inductive reasoning. Psychol. Rev. 116, 20–58 (2009).

  80. 80.

    Jazayeri, M. & Shadlen, M. N. Temporal context calibrates interval timing. Nat. Neurosci. 13, 1020–1026 (2010).

  81. 81.

    Körding, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004).

  82. 82.

    Gershman, S. J., Vul, E. & Tenenbaum, J. B. Multistability and perceptual inference. Neural Comput. 24, 1–24 (2012).

  83. 83.

    Moreno-Bote, R., Knill, D. C. & Pouget, A. Bayesian sampling in visual perception. Proc. Natl. Acad. Sci. USA 108, 12491–12496 (2011).

  84. 84.

    Vul, E., Goodman, N., Griffiths, T. L. & Tenenbaum, J. B. One and done? Optimal decisions from very few samples. Cogn. Sci. 38, 599–637 (2014).

  85. 85.

    Griffiths, T. L. & Tenenbaum, J. B. Optimal predictions in everyday cognition. Psychol. Sci. 17, 767–773 (2006).

  86. 86.

    Mozer, M. C., Pashler, H. & Homaei, H. Optimal predictions in everyday cognition: the wisdom of individuals or crowds? Cogn. Sci. 32, 1133–1147 (2008).

  87. 87.

    Gigerenzer, G. & Gaissmaier, W. Heuristic decision making. Annu. Rev. Psychol. 62, 451–482 (2011).

  88. 88.

    Polya, G. How to Solve It (Princeton University Press, Princeton, NJ, USA, 2014).

  89. 89.

    Newell, A. You can’t play 20 questions with nature and win: projective comments on the papers of this symposium. Visual Information Processing. https://doi.org/10.1016/B978-0-12-170150-5.50012-3 (1973).

  90. 90.

    Newell, A., Shaw, J.C. & Simon, H.A. Empirical explorations of the logic theory machine: a case study in heuristic. Proceedings of the IRE-AIEE-ACM Western Joint Computer Conference: Techniques for Reliability 218–230 (1957).

  91. 91.

    Lenat, D. B. AM, an artificial intelligence approach to discovery in mathematics as heuristic search. PhD thesis, Stanford Univ. (1976).

  92. 92.

    Newell, A. The chess machine: an example of dealing with a complex task by adaptation. Proceedings of the AFIPS Western Joint Computer Conference 101–108 (1955).

  93. 93.

    Newell, A. & Simon, H. A. Computer science as empirical inquiry: symbols and search. Commun. ACM 19, 113–126 (1976).

  94. 94.

    Dawes, R. M. The robust beauty of improper linear models in decision making. Am. Psychol. 34, 571–582 (1979).

  95. 95.

    Marr, D. Vision: a Computational Investigation into the Human Representation and Processing of Visual Information. (MIT Press, Cambridge, MA, USA, 1982).

  96. 96.

    Yeshurun, Y., Carrasco, M. & Maloney, L. T. Bias and sensitivity in two-interval forced choice procedures: tests of the difference model. Vision Res. 48, 1837–1851 (2008).

  97. 97.

    Fründ, I., Wichmann, F. A. & Macke, J. H. Quantifying the effect of intertrial dependence on perceptual decisions. J. Vis. 14, 9 (2014).

  98. 98.

    Braun, A., Urai, A. E. & Donner, T. H. Adaptive history biases result from confidence-weighted accumulation of past choices. J. Neurosci. 38, 2418–2429 (2018).

  99. 99.

    Abrahamyan, A., Silva, L. L., Dakin, S. C., Carandini, M. & Gardner, J. L. Adaptable history biases in human perceptual decisions. Proc. Natl. Acad. Sci. USA 113, E3548–E3557 (2016).

  100. 100.

    Lueckmann, J.-M., Macke, J. H. & Nienborg, H. Can serial dependencies in choices and neural activity explain choice probabilities? J. Neurosci. 38, 3495–3506 (2018).

  101. 101.

    Busse, L. et al. The detection of visual contrast in the behaving mouse. J. Neurosci. 31, 11351–11361 (2011).

  102. 102.

    Marcos, E. et al. Neural variability in premotor cortex is modulated by trial history and predicts behavioral performance. Neuron 78, 249–255 (2013).

  103. 103.

    Akrami, A., Kopec, C. D., Diamond, M. E. & Brody, C. D. Posterior parietal cortex represents sensory history and mediates its effects on behaviour. Nature 554, 368–372 (2018).

  104. 104.

    Fernberger, S. W. Interdependence of judgments within the series for the method of constant stimuli. J. Exp. Psychol. 3, 126–150 (1920).

  105. 105.

    Senders, V. L. & Sowards, A. Analysis of response sequences in the setting of a psychophysical experiment. Am. J. Psychol. 65, 358–374 (1952).

  106. 106.

    Howarth, C. I. & Bulmer, M. G. Non-random sequences in visual threshold experiments. Q. J. Exp. Psychol. 8, 163–171 (1956).

  107. 107.

    Laming, D. Choice reaction performance following an error. Acta Psychol. (Amst.) 43, 199–224 (1979).

  108. 108.

    Rabbitt, P. & Rodgers, B. What does a man do after he makes an error? an analysis of response programming. Q. J. Exp. Psychol. 29, 727–743 (1977).

  109. 109.

    Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

  110. 110.

    Fischer, J. & Whitney, D. Serial dependence in visual perception. Nat. Neurosci. 17, 738–743 (2014).

  111. 111.

    Fritsche, M., Mostert, P. & de Lange, F. P. Opposite effects of recent history on perception and decision. Curr. Biol. 27, 590–595 (2017).

  112. 112.

    Ackermann, J. F. & Landy, M. S. Suboptimal decision criteria are predicted by subjectively weighted probabilities and rewards. Atten. Percept. Psychophys. 77, 638–658 (2015).

  113. 113.

    Ulehla, Z. J. Optimality of perceptual decision criteria. J. Exp. Psychol. 71, 564–569 (1966).

  114. 114.

    Creelman, C. D. & Donaldson, W. ROC curves for discrimination of linear extent. J. Exp. Psychol. 77, 514–516 (1968).

  115. 115.

    Parks, T. E. Signal-detectability theory of recognition-memory performance. Psychol. Rev. 73, 44–58 (1966).

  116. 116.

    Thomas, E. A. & Legge, D. Probability matching as a basis for detection and recognition decisions. Psychol. Rev. 77, 65–72 (1970).

  117. 117.

    Norton, E. H., Fleming, S. M., Daw, N. D. & Landy, M. S. Suboptimal criterion learning in static and dynamic environments. PLoS Comput. Biol. 13, e1005304 (2017).

  118. 118.

    Laquitaine, S. & Gardner, J. L. A Switching observer for human perceptual estimation. Neuron 97, 462–474.e6 (2018).

  119. 119.

    Nardini, M., Jones, P., Bedford, R. & Braddick, O. Development of cue integration in human navigation. Curr. Biol. 18, 689–693 (2008).

  120. 120.

    Adams, W. J. The development of audio-visual integration for temporal judgements. PLoS Comput. Biol. 12, e1004865 (2016).

  121. 121.

    Raviv, O., Ahissar, M. & Loewenstein, Y. How recent history affects perception: the normative approach and its heuristic approximation. PLoS Comput. Biol. 8, e1002731 (2012).

  122. 122.

    Najemnik, J. & Geisler, W. S. Simple summation rule for optimal fixation selection in visual search. Vision Res. 49, 1286–1294 (2009).

  123. 123.

    Baldassi, S. & Verghese, P. Comparing integration rules in visual search. J. Vis. 2, 559–570 (2002).

  124. 124.

    Kramer, P., Graham, N. & Yager, D. Simultaneous measurement of spatial-frequency summation and uncertainty effects. J. Opt. Soc. Am. A 2, 1533–1542 (1985).

  125. 125.

    Baldassi, S. & Burr, D. C. Feature-based integration of orientation signals in visual search. Vision Res. 40, 1293–1300 (2000).

  126. 126.

    Marlow, P. J., Kim, J. & Anderson, B. L. The perception and misperception of specular surface reflectance. Curr. Biol. 22, 1909–1913 (2012).

  127. 127.

    Maloney, L. T. & Mamassian, P. Bayesian decision theory as a model of human visual perception: testing Bayesian transfer. Vis. Neurosci. 26, 147–155 (2009).

  128. 128.

    Shen, S. & Ma, W. J. A detailed comparison of optimality and simplicity in perceptual decision making. Psychol. Rev. 123, 452–480 (2016).

  129. 129.

    Darlington, T. R., Beck, J. M. & Lisberger, S. G. Neural implementation of Bayesian inference in a sensorimotor behavior. Nat. Neurosci. 21, 1442–1451 (2018).

  130. 130.

    Jazayeri, M. & Movshon, J. A. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9, 690–696 (2006).

  131. 131.

    Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006).

  132. 132.

    Fetsch, C. R., DeAngelis, G. C. & Angelaki, D. E. Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat. Rev. Neurosci. 14, 429–442 (2013).

  133. 133.

    Huk, A., Bonnen, K. & He, B. J. Beyond trial-based paradigms: continuous behavior, ongoing neural activity, and natural stimuli. J. Neurosci. 38, 7551–7558 (2018).

  134. 134.

    Zhang, W. & Luck, S. J. Discrete fixed-resolution representations in visual working memory. Nature 453, 233–235 (2008).

  135. 135.

    Beard, B.L. & Ahumada, A.J. in Human Vision and Electronic Imaging III 3299, 79–86 (1998).

  136. 136.

    Ramachandran, V.S. in Vision: Coding and Efficiency (ed. Blakemore, C.) 346–360 (Cambridge Univ. Press, Cambridge, UK, 1991).

  137. 137.

    Purves, D., Wojtach, W. T. & Lotto, R. B. Understanding vision in wholly empirical terms. Proc. Natl. Acad. Sci. USA 108(Suppl 3), 15588–15595 (2011).

  138. 138.

    Kahneman, D. & Tversky, A. Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979).

  139. 139.

    Savage, L. J. The Foundations of Statistics (Wiley, New York, 1954).

  140. 140.

    Shi, L., Griffiths, T. L., Feldman, N. H. & Sanborn, A. N. Exemplar models as a mechanism for performing Bayesian inference. Psychon. Bull. Rev. 17, 443–464 (2010).

  141. 141.

    Simon, H. A. A behavioral model of rational choice. Q. J. Econ. 69, 99–118 (1955).

  142. 142.

    Lieder, F., Griffiths, T. L., M Huys, Q. J. & Goodman, N. D. The anchoring bias reflects rational use of cognitive resources. Psychon. Bull. Rev. 25, 322–349 (2018).

  143. 143.

    Sutton, R. S. & Barto, A. G. Reinforcement Learning: an Introduction (MIT Press, Cambridge, MA, USA, 1998).

  144. 144.

    Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

  145. 145.

    Helmholtz, H. V. Treatise on Physiological Optics. Volume 3: The Perceptions of Vision (Optical Society of America, New York, 1867).

  146. 146.

    Ramachandran, V. S. Perception of shape from shading. Nature 331, 163–166 (1988).

  147. 147.

    Freeman, W. T. The generic viewpoint assumption in a framework for visual perception. Nature 368, 542–545 (1994).

  148. 148.

    Nakayama, K. & Shimojo, S. Experiencing and perceiving visual surfaces. Science 257, 1357–1363 (1992).

  149. 149.

    Ma, W. J. Organizing probabilistic models of perception. Trends Cogn. Sci. 16, 511–518 (2012).

  150. 150.

    Tversky, A. & Kahneman, D. Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychol. Rev. 90, 293–315 (1983).

Download references

Acknowledgements

I thank E. Thomas, H. Gweon, S. Wu, D. Birman, G. Riesen, A. Jagadeesh, and M. Lee for discussions and comments on earlier drafts of this manuscript. I am grateful for the generous support of Research to Prevent Blindness and Lions Clubs International Foundation and the Hellman Fellows Fund.

Author information

Affiliations

  1. Department of Psychology, Stanford University, Stanford, California, USA

    • Justin L. Gardner

Authors

  1. Search for Justin L. Gardner in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Justin L. Gardner.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41593-019-0340-4