Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A hypothalamic circuit for the circadian control of aggression

Abstract

‘Sundowning’ in dementia and Alzheimer’s disease is characterized by early-evening agitation and aggression. While such periodicity suggests a circadian origin, whether the circadian clock directly regulates aggressive behavior is unknown. We demonstrate that a daily rhythm in aggression propensity in male mice is gated by GABAergic subparaventricular zone (SPZGABA) neurons, the major postsynaptic targets of the central circadian clock, the suprachiasmatic nucleus. Optogenetic mapping revealed that SPZGABA neurons receive input from vasoactive intestinal polypeptide suprachiasmatic nucleus neurons and innervate neurons in the ventrolateral part of the ventromedial hypothalamus (VMH), which is known to regulate aggression. Additionally, VMH-projecting dorsal SPZ neurons are more active during early day than early night, and acute chemogenetic inhibition of SPZGABA transmission phase-dependently increases aggression. Finally, SPZGABA-recipient central VMH neurons directly innervate ventrolateral VMH neurons, and activation of this intra-VMH circuit drove attack behavior. Altogether, we reveal a functional polysynaptic circuit by which the suprachiasmatic nucleus clock regulates aggression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aggression follows a daily rhythm in mice that is directly regulated by SPZGABA neurons.
Fig. 2: SPZGABA neurons project to and inhibit VMH neurons, and they receive input from VIP neurons of the SCN.
Fig. 3: SPZ→VMH neurons are more active at ZT1 than ZT13, and chemogenetic inhibition of SPZGABA transmission increases aggression at ZT1 but not ZT13.
Fig. 4: VMHc neurons strongly excite VMHvl neurons and drive behavioral aggression.

References

  1. Manfredini, R. et al. Day-night variation in aggressive behavior among psychiatric inpatients. Chronobiol. Int. 18, 503–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Bachman, D. & Rabins, P. “Sundowning” and other temporally associated agitation states in dementia patients. Annu. Rev. Med. 57, 499–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Bronsard, G. & Bartolomei, F. Rhythms, rhythmicity and aggression. J. Physiol. Paris 107, 327–334 (2013).

    Article  PubMed  Google Scholar 

  4. Jagannath, A., Peirson, S. N. & Foster, R. G. Sleep and circadian rhythm disruption in neuropsychiatric illness. Curr. Opin. Neurobiol. 23, 888–894 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Tordjman, S. et al. Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives. Front Pediatr. 3, 1 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miczek, K. A., Maxson, S. C., Fish, E. W. & Faccidomo, S. Aggressive behavioral phenotypes in mice. Behav. Brain Res. 125, 167–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Miczek, K. A. et al. Neurobiology of escalated aggression and violence. J. Neurosci. 27, 11803–11806 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nelson, R. J. & Trainor, B. C. Neural mechanisms of aggression. Nat. Rev. Neurosci. 8, 536–546 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Sternson, S. M. Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron 77, 810–824 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, T. et al. Social control of hypothalamus-mediated male aggression. Neuron 95, 955–970.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, C. F. et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, H. et al. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509, 627–632 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Falkner, A. L., Grosenick, L., Davidson, T. J., Deisseroth, K. & Lin, D. Hypothalamic control of male aggression-seeking behavior. Nat. Neurosci. 19, 596–604 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Welsh, D. K., Logothetis, D. E., Meister, M. & Reppert, S. M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697–706 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Jin, X. et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96, 57–68 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Gall, A. J., Todd, W. D. & Blumberg, M. S. Development of SCN connectivity and the circadian control of arousal: a diminishing role for humoral factors? PLoS One 7, e45338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saper, C. B. The central circadian timing system. Curr. Opin. Neurobiol. 23, 747–751 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Watts, A. G., Swanson, L. W. & Sanchez-Watts, G. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J. Comp. Neurol. 258, 204–229 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Watts, A. G. & Swanson, L. W. Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J. Comp. Neurol. 258, 230–252 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Lu, J. et al. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J. Neurosci. 21, 4864–4874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vujovic, N., Gooley, J. J., Jhou, T. C. & Saper, C. B. Projections from the subparaventricular zone define four channels of output from the circadian timing system. J. Comp. Neurol. 523, 2714–2737 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tong, Q., Ye, C. P., Jones, J. E., Elmquist, J. K. & Lowell, B. B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat. Neurosci. 11, 998–1000 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaur, S. et al. Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J. Neurosci. 33, 7627–7640 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Engeland, W. C. & Arnhold, M. M. Neural circuitry in the regulation of adrenal corticosterone rhythmicity. Endocrine 28, 325–332 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chou, T. C. et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 23, 10691–10702 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Krashes, M. J. et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507, 238–242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Anaclet, C. et al. The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat. Neurosci. 17, 1217–1224 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fan, J. et al. Vasoactive intestinal polypeptide (VIP)-expressing neurons in the suprachiasmatic nucleus provide sparse GABAergic outputs to local neurons with circadian regulation occurring distal to the opening of postsynaptic GABAA ionotropic receptors. J. Neurosci. 35, 1905–1920 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lynagh, T. & Lynch, J. W. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations. J. Biol. Chem. 285, 14890–14897 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berridge, K. C. Motivation concepts in behavioral neuroscience. Physiol. Behav. 81, 179–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Kennedy, A. et al. Internal states and behavioral decision-making: toward an integration of emotion and cognition. Cold Spring Harb. Symp. Quant. Biol. 79, 199–210 (2014).

    Article  PubMed  Google Scholar 

  35. LeDoux, J. Rethinking the emotional brain. Neuron 73, 653–676 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Silva, B. A. et al. Independent hypothalamic circuits for social and predator fear. Nat. Neurosci. 16, 1731–1733 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kunwar, P.S. et al. Ventromedial hypothalamic neurons control a defensive emotion state. eLife 4, (2015).

  38. Bilu, C. & Kronfeld-Schor, N. Effects of circadian phase and melatonin injection on anxiety-like behavior in nocturnal and diurnal rodents. Chronobiol. Int. 30, 828–836 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Albrecht, A. & Stork, O. Circadian rhythms in fear conditioning: an overview of behavioral, brain system, and molecular interactions. Neural Plast. 2017, 3750307 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nakamura, W. et al. In vivo monitoring of circadian timing in freely moving mice. Curr. Biol. 18, 381–385 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Todd, W. D., Gall, A. J., Weiner, J. A. & Blumberg, M. S. Distinct retinohypothalamic innervation patterns predict the developmental emergence of species-typical circadian phase preference in nocturnal Norway rats and diurnal Nile grass rats. J. Comp. Neurol. 520, 3277–3292 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hermes, M. L., Kolaj, M., Doroshenko, P., Coderre, E. & Renaud, L. P. Effects of VPAC2 receptor activation on membrane excitability and GABAergic transmission in subparaventricular zone neurons targeted by suprachiasmatic nucleus. J. Neurophysiol. 102, 1834–1842 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Khachiyants, N., Trinkle, D., Son, S. J. & Kim, K. Y. Sundown syndrome in persons with dementia: an update. Psychiatry Investig. 8, 275–287 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bedrosian, T. A. & Nelson, R. J. Sundowning syndrome in aging and dementia: research in mouse models. Exp. Neurol. 243, 67–73 (2013).

    Article  PubMed  Google Scholar 

  45. Canevelli, M. et al. Sundowning in dementia: clinical relevance, pathophysiological determinants, and therapeutic approaches. Front. Med. (Lausanne) 3, 73 (2016).

    Google Scholar 

  46. Hope, T., Keene, J., Gedling, K., Fairburn, C. G. & Jacoby, R. Predictors of institutionalization for people with dementia living at home with a carer. Int. J. Geriatr. Psychiatry 13, 682–690 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Bedrosian, T. A. et al. Nocturnal light exposure impairs affective responses in a wavelength-dependent manner. J. Neurosci. 33, 13081–13087 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Oishi, Y. et al. Role of the medial prefrontal cortex in cataplexy. J. Neurosci. 33, 9743–9751 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hattori, T. et al. Self-exposure to the male pheromone ESP1 enhances male aggressiveness in mice. Curr. Biol. 26, 1229–1234 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Padilla, S. L. et al. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat. Neurosci. 19, 734–741 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hashikawa, K. et al. Esr1+ cells in the ventromedial hypothalamus control female aggression. Nat. Neurosci. 20, 1580–1590 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Burgos-Artizzu, X.P., Dollar, P., Lin, D., Anderson, D.J. & Perona, P. in IEEE Conference on Computer Vision and Pattern Recognition, Providence, Rhode Island, 1322–1329 (2012).

  53. Zhang, R. et al. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice. Mol. Psychiatry 22, 733–744 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Pei, H., Sutton, A. K., Burnett, K. H., Fuller, P. M. & Olson, D. P. AVP neurons in the paraventricular nucleus of the hypothalamus regulate feeding. Mol. Metab. 3, 209–215 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheong, R. Y., Czieselsky, K., Porteous, R. & Herbison, A. E. Expression of ESR1 in glutamatergic and GABAergic neurons is essential for normal puberty onset, estrogen feedback, and fertility in female mice. J. Neurosci. 35, 14533–14543 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Guillery, R. W. On counting and counting errors. J. Comp. Neurol. 447, 1–7 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Venner, A., Anaclet, C., Broadhurst, R. Y., Saper, C. B. & Fuller, P. M. A novel population of wake-promoting GABAergic neurons in the ventral lateral hypothalamus. Curr. Biol. 26, 2137–2143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Q. Ha, M. Thompson, S. Bandaru, C. Friedman, R. Thomas, and M. Ha for excellent technical assistance and C. Dulac for helpful comments during the early stages of this project. We thank J. Lynch (University of Queensland) for the hGlyR construct; and D. Anderson, X. Burgos-Artizzu, and P. Dollár (California Institute of Technology) for the Behavior Annotator MatLab script and code. This work was supported by the G. Harold and Leila Y. Mathers Foundation and the US National Institutes of Health (NIH) grants NS072337, NS085477, AG09975, and HL095491 to C.B.S.; NS073613, NS092652, and NS103161 to P.M.F.; and DK111401, DK075632, DK096010, DK089044, DK046200, and DK057521 to B.B.L. W.D.T. was supported by Alzheimer’s Association grant AARF-16-443613 and NIH grants NS084582-01A1 and HL00701-15. N.L.M. was supported by CNPq (National Health Council for Scientific and Technological Development/Brazil, grant 200881/2014-0), CAPES (Coordination for the Improvement of Higher Education Personnel).

Author information

Authors and Affiliations

Authors

Contributions

W.D.T., H.F., and C.B.S. designed the experiments. W.D.T., H.F., J.L.W., R.Z., and N.L.M. carried out these experiments. J.L.W., A.V., S.K., T.L., D.P.O., B.B.L., and P.M.F. provided analytic tools and reagents. W.D.T., H.F., J.L.W., R.Z., A.V., and R.Y.B. analyzed the data. W.D.T., H.F., P.M.F., and C.B.S. wrote the paper.

Corresponding author

Correspondence to Clifford B. Saper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Representative hypothalamic sections depicting Cre expression following AAV-iCre-2A-Venus in the SPZ.

Sections were immunohistochemically double-labeled for Cre (black), to reveal cells transfected by the AAV, and VIP (brown) to reveal fibers from the SCN that delineate the SPZ. ot, optic tract. f, fornix. Representative of 16 mice.

Supplementary Figure 2 Injection of AAV-iCre-2A-Venus into the SPZ successfully deleted Vgat.

Representative section from a Vgat in situ hybridization demonstrating unilateral SPZ Vgat-deletion compared to an undeleted SPZ. White ovals depict the SPZ. Representative of 2 mice.

Supplementary Figure 3 Rhythms in aggression propensity are not due to the direct effects of light.

In constant darkness (free-running conditions), intact mice (C57Bl6/J, n=12) show differences in aggression propensity (total time attacking) between early subjective day [circadian time (CT)1] and early subjective night (CT13). Planned comparisons, paired t test between CT1 and CT13, two-tailed, t(11)=2.482, P=0.0305. Means ± s.e.m.

Supplementary Figure 4 SPZ Vgat-deletions do not disrupt entrained or free-running rhythms of Tb.

(a) Mean (± s.e.m.) Tb per hour in SPZ Vgat-deleted mice (red, n=8) and intact GFP-injected littermate controls (blue, n=8) (two-way repeated measures ANOVA). (b) Double plotted actogram for Tb in LD (12:12 light-dark cycle) and constant darkness (DD). Arrow denotes the beginning of the DD period (from the end of the normal dark period).

Supplementary Figure 5 SPZ subregions have different projection patterns in mice.

Darkfield photomicrographs depicting hrGFP-labeled neurons (orange/brown) in the SPZ and fibers (yellow/gold) in the DMH and VMH. (a, b) One Vgat-IRES-Cre mouse with an AAV-FLEX-hrGFP injection site that transfected neurons in both the ventral SPZ (a) and dorsal SPZ (b). Images are from the same mouse, but from adjacent sections, as depicted in Fig. 2d-e. Representative of 2 mice. (c, d) Two additional Vgat-IRES-Cre mice with different AAV-FLEX-hrGFP injection sites transfecting all but the ventral SPZ (c), representative of 2 mice, or dorsal SPZ (d), representative of 4 mice, [see white ovals, compared to (a) and (b)]. (e-f) A lack of transfected cells in the ventral SPZ results in less hrGFP-labeled fibers and terminals in the DMH (e, same mouse as c), representative of 2 mice, while a lack of transfected cells in the dorsolateral SPZ results in less hrGFP labeling in the VMH (f, same mouse as d), representative of 4 mice. Using subtraction methods we can deduce that, in mice, the ventral SPZGABA population projects more heavily to the DMH while the dorsal SPZGABA population projects more heavily to the VMH (arrows).

Supplementary Figure 6 The dorsal SPZ shows high numbers of c-Fos+ neurons at ZT1 in intact, uninjected mice.

C57BL6/J mice (n=6) were maintained under the same lighting and housing conditions as Vgat-IRES-Cre mice prior to perfusion (Fig. 4f-g), except they did not undergo prior surgery or IP injections of IVM/VEH. When perfused 90 minutes after ZT1, these mice showed intense Fos immunolabeling (black) within the dorsal SPZ (blue ovals). This area densely projects to the VMH (Fig. 3 and Fig. S3) and closely mirrors the anatomical region of SPZGABA neurons that we identified as critical for mediating changes in aggressive behavior (Fig. 1g and 3b).

Supplementary Figure 7 IVM does not increase aggression at ZT1 in control mice.

There were no significant differences between IVM and VEH in total time attacking [left; paired t tests, two-tailed: t(7)=0.44, nsP=0.67), number of attack bouts [center; paired t tests, two-tailed: t(7)=0.22, nsP=0.83), or attack latency [right; paired t tests, two-tailed: t(7)=0.22, nsP=0.83] at ZT1 in control Vgat-IRES-Cre mice (n=8) injected with ChR2 into the SPZ, which does not respond to IVM. Means ± s.e.m.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7

Reporting Summary

Supplementary Software

Custom script for weighting heat map by aggression score

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todd, W.D., Fenselau, H., Wang, J.L. et al. A hypothalamic circuit for the circadian control of aggression. Nat Neurosci 21, 717–724 (2018). https://doi.org/10.1038/s41593-018-0126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-018-0126-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing