Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Therapeutic targeting of cellular senescence in diabetic macular edema: preclinical and phase 1 trial results

Abstract

Compromised vascular endothelial barrier function is a salient feature of diabetic complications such as sight-threatening diabetic macular edema (DME). Current standards of care for DME manage aspects of the disease, but require frequent intravitreal administration and are poorly effective in large subsets of patients. Here we provide evidence that an elevated burden of senescent cells in the retina triggers cardinal features of DME pathology and conduct an initial test of senolytic therapy in patients with DME. In cell culture models, sustained hyperglycemia provoked cellular senescence in subsets of vascular endothelial cells displaying perturbed transendothelial junctions associated with poor barrier function and leading to micro-inflammation. Pharmacological elimination of senescent cells in a mouse model of DME reduces diabetes-induced retinal vascular leakage and preserves retinal function. We then conducted a phase 1 single ascending dose safety study of UBX1325 (foselutoclax), a senolytic small-molecule inhibitor of BCL-xL, in patients with advanced DME for whom anti-vascular endothelial growth factor therapy was no longer considered beneficial. The primary objective of assessment of safety and tolerability of UBX1325 was achieved. Collectively, our data suggest that therapeutic targeting of senescent cells in the diabetic retina with a BCL-xL inhibitor may provide a long-lasting, disease-modifying intervention for DME. This hypothesis will need to be verified in larger clinical trials. ClinicalTrials.gov identifier: NCT04537884.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathways of cellular senescence are triggered in the diabetic retina.
Fig. 2: Sustained high glucose triggers DNA damage and cellular senescence in ECs.
Fig. 3: Targeted elimination of senescent cells reduces diabetes-induced vascular leakage and preserves retinal function.
Fig. 4: Intravitreal injection of UBX1325 in patients with DME.

Similar content being viewed by others

Data availability

Requests for additional information, reagents or material resources should be addressed to P.S. Sequencing data from STZ-treated mouse retinas have been deposited in NCBI’s Gene Expression Omnibus under accession number GSE211583. Datasets used to perform single-cell transcriptomic analyses on mouse diabetic retinas were previously published and are publicly available under the accession number GSE178121. Datasets used to perform bulk transcriptomic analyses on rat diabetic retinas were previously published and are publicly available under the accession number GSE20886. All information on materials and reagents is provided in Supplementary Information. All clinical data have been provided in the paper in the form of figures, in the text or in Supplementary Information (including the clinical trial protocol, STROBE checklist and the statistical analysis plan). Additional requests for clinical data should be addressed to the corresponding author and may be provided upon reasonable request. Source data are provided with this paper.

References

  1. Antonetti, D. A., Klein, R. & Gardner, T. W. Diabetic retinopathy. N. Engl. J. Med. 366, 1227–1239 (2012).

    CAS  PubMed  Google Scholar 

  2. Levine, S. R., Sapieha, P., Dutta, S., Sun, J. K. & Gardner, T. W. It is time for a moonshot to find “Cures” for diabetic retinal disease. Prog. Retin. Eye Res. 90, 101051 (2022).

    CAS  PubMed  Google Scholar 

  3. Stitt, A. W. et al. The progress in understanding and treatment of diabetic retinopathy. Prog. Retin. Eye Res. 51, 156–186 (2016).

    PubMed  Google Scholar 

  4. Yu, D. Y. et al. Retinal capillary perfusion: spatial and temporal heterogeneity. Prog. Retin. Eye Res. 70, 23–54 (2019).

    PubMed  Google Scholar 

  5. Duh, E. J., Sun, J. K. & Stitt, A. W. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight 2, e93751 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Heier, J. S. et al. Intravitreal aflibercept for diabetic macular edema: 148-week results from the VISTA and VIVID studies. Ophthalmology 123, 2376–2385 (2016).

    PubMed  Google Scholar 

  7. Scott, A. W., Bressler, N. M., Ffolkes, S., Wittenborn, J. S. & Jorkasky, J. Public attitudes about eye and vision health. JAMA Ophthalmol. 134, 1111–1118 (2016).

    PubMed  Google Scholar 

  8. Bressler, N. M. et al. Persistent macular thickening following intravitreous aflibercept, bevacizumab, or ranibizumab for central-involved diabetic macular edema with vision impairment: a secondary analysis of a randomized clinical trial. JAMA Ophthalmol. 136, 257–269 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Rofagha, S. et al. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology 120, 2292–2299 (2013).

    PubMed  Google Scholar 

  10. Comparison of Age-related Macular Degeneration Treatments Trials Research Group. et al. Five-year outcomes with anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration: the comparison of age-related macular degeneration treatments trials. Ophthalmology 123, 1751–1761 (2016).

    Google Scholar 

  11. Robinson, G. S. et al. Nonvascular role for VEGF: VEGFR-1, 2 activity is critical for neural retinal development. FASEB J. 15, 1215–1217 (2001).

    CAS  PubMed  Google Scholar 

  12. Kurihara, T., Westenskow, P. D., Bravo, S., Aguilar, E. & Friedlander, M. Targeted deletion of Vegfa in adult mice induces vision loss. J. Clin. Invest. 122, 4213–4217 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Berber, P., Grassmann, F., Kiel, C. & Weber, B. H. An eye on age-related macular degeneration: the role of microRNAs in disease pathology. Mol. Diagn. Ther. 21, 31–43 (2017).

    CAS  PubMed  Google Scholar 

  14. Saint-Geniez, M. et al. Endogenous VEGF is required for visual function: evidence for a survival role on Müller cells and photoreceptors. PLoS ONE 3, e3554 (2008).

    ADS  PubMed  PubMed Central  Google Scholar 

  15. Jones, R. 3rd & Rhee, D. J. Corticosteroid-induced ocular hypertension and glaucoma: a brief review and update of the literature. Curr. Opin. Ophthalmol. 17, 163–167 (2006).

    PubMed  Google Scholar 

  16. Little, H. L. Treatment of proliferative diabetic retinopathy. Long-term results of argon laser photocoagulation. Ophthalmology 92, 279–283 (1985).

    CAS  PubMed  Google Scholar 

  17. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    CAS  PubMed  Google Scholar 

  18. Coppé, J. -P., Desprez, P. -Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Yamazaki, Y. et al. Vascular cell senescence contributes to blood–brain barrier breakdown. Stroke 47, 1068–1077 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. Oubaha, M. et al. Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Sci. Transl. Med. 8, 362ra144 (2016).

    PubMed  Google Scholar 

  21. Binet, F. et al. Neutrophil extracellular traps target senescent vasculature for tissue remodeling in retinopathy. Science 369, eaay5356 (2020).

    CAS  PubMed  Google Scholar 

  22. Crespo-Garcia, S. et al. Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab. 33, 818–832 (2021).

    CAS  PubMed  Google Scholar 

  23. Palmer, A. K. et al. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 64, 2289–2298 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Thompson, P. J. et al. Targeted elimination of senescent beta cells prevents type 1 diabetes. Cell Metab. 29, 1045–1060 (2019).

    CAS  PubMed  Google Scholar 

  25. Aguayo-Mazzucato, C. et al. Acceleration of beta cell aging determines diabetes and senolysis improves disease outcomes. Cell Metab. 30, 129–142 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Su, L. et al. Diabetic endothelial cells differentiated from patient iPSCs show dysregulated glycine homeostasis and senescence associated phenotypes. Front. Cell Dev. Biol. 9, 667252 (2021).

    PubMed  PubMed Central  Google Scholar 

  27. Lamoke, F. et al. Increased oxidative and nitrative stress accelerates aging of the retinal vasculature in the diabetic retina. PLoS ONE 10, e0139664 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–193 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bao, L. et al. The S100A6 calcium-binding protein regulates endothelial cell-cycle progression and senescence. FEBS J. 279, 4576–4588 (2012).

    CAS  PubMed  Google Scholar 

  30. VanGuilder, H. D. et al. Multi-modal proteomic analysis of retinal protein expression alterations in a rat model of diabetic retinopathy. PLoS ONE 6, e16271 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun, L. et al. Single cell RNA sequencing (scRNA-seq) deciphering pathological alterations in streptozotocin-induced diabetic retinas. Exp. Eye Res. 210, 108718 (2021).

    CAS  PubMed  Google Scholar 

  32. Miloudi, K. et al. NOTCH1 signaling induces pathological vascular permeability in diabetic retinopathy. Proc. Natl Acad. Sci. USA 116, 4538–4547 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoon, C. H. et al. Diabetes-induced Jagged1 overexpression in endothelial cells causes retinal capillary regression in a murine model of diabetes mellitus: insights into diabetic retinopathy. Circulation 134, 233–247 (2016).

    CAS  PubMed  Google Scholar 

  34. Okamoto, A., Iwamoto, Y. & Maru, Y. Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Mol. Cell. Biol. 26, 1087–1097 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Karthikkeyan, G. et al. Hyperglycemia induced early growth response-1 regulates vascular dysfunction in human retinal endothelial cells. Microvasc. Res. 117, 37–43 (2018).

    CAS  PubMed  Google Scholar 

  36. Venu, V. K. P. et al. Metformin prevents hyperglycemia-associated, oxidative stress-induced vascular endothelial dysfunction: essential role for the orphan nuclear receptor human nuclear receptor 4A1 (Nur77). Mol. Pharmacol. 100, 428–455 (2021).

    CAS  PubMed  Google Scholar 

  37. Li, H. et al. Diabetes promotes retinal vascular endothelial cell injury by inducing CCN1 expression. Front. Cardiovasc. Med. 8, 689318 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. You, J. J., Yang, C. M., Chen, M. S. & Yang, C. H. Regulation of Cyr61/CCN1 expression by hypoxia through cooperation of c-Jun/AP-1 and HIF-1alpha in retinal vascular endothelial cells. Exp. Eye Res. 91, 825–836 (2010).

    CAS  PubMed  Google Scholar 

  39. Ao, H., Liu, B., Li, H. & Lu, L. Egr1 mediates retinal vascular dysfunction in diabetes mellitus via promoting p53 transcription. J. Cell. Mol. Med. 23, 3345–3356 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bruemmer, D. et al. Regulation of the growth arrest and DNA damage-inducible gene 45 (GADD45) by peroxisome proliferator-activated receptor gamma in vascular smooth muscle cells. Circ. Res. 93, e38–e47 (2003).

    CAS  PubMed  Google Scholar 

  41. Hoare, M. et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat. Cell Biol. 18, 979–992 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Passegue, E. & Wagner, E. F. JunB suppresses cell proliferation by transcriptional activation of p16INK4a expression. EMBO J. 19, 2969–2979 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bertelli, P. M. et al. Long term high glucose exposure induces premature senescence in retinal endothelial cells. Front. Physiol. 13, 929118 (2022).

    PubMed  PubMed Central  Google Scholar 

  44. Murakami, T., Felinski, E. A. & Antonetti, D. A. Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J. Biol. Chem. 284, 21036–21046 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Murakami, T., Frey, T., Lin, C. & Antonetti, D. A. Protein kinase cbeta phosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor-induced permeability in vivo. Diabetes 61, 1573–1583 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Huber, A. H. et al. The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J. Biol. Chem. 276, 12301–12309 (2001).

    CAS  PubMed  Google Scholar 

  47. Claesson-Welsh, L., Dejana, E. & McDonald, D. M. Permeability of the endothelial barrier: identifying and reconciling controversies. Trends Mol. Med. 27, 314–331 (2021).

    CAS  PubMed  Google Scholar 

  48. Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gonzalez-Gualda, E., Baker, A. G., Fruk, L. & Munoz-Espin, D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J. 288, 56–80 (2021).

    CAS  PubMed  Google Scholar 

  51. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    ADS  CAS  PubMed  Google Scholar 

  52. Yosef, R. et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun. 7, 11190 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smith, L. E. et al. Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. 35, 101–111 (1994).

    CAS  PubMed  Google Scholar 

  54. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gonzalez, V. H. et al. Early and long-term responses to anti-vascular endothelial growth factor therapy in diabetic macular edema: analysis of protocol I data. Am. J. Ophthalmol. 172, 72–79 (2016).

    CAS  PubMed  Google Scholar 

  56. Wykoff, C. C. et al. Pharmacokinetics of the port delivery system with ranibizumab in the Ladder phase 2 trial for neovascular age-related macular degeneration. Ophthalmol. Ther. 11, 1705–1717 (2022).

    PubMed  PubMed Central  Google Scholar 

  57. Faricimab (Vabysmo) for age-related macular degeneration and diabetic macular edema. Med. Lett. Drugs Ther. 64, 45-46 (2022).

  58. Abouhish, H. et al. Inhibition of HDAC6 attenuates diabetes-induced retinal redox imbalance and microangiopathy. Antioxidants 9, 599 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gericke, A., Suminska-Jasinska, K. & Breborowicz, A. Sulodexide reduces glucose induced senescence in human retinal endothelial cells. Sci. Rep. 11, 11532 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mortuza, R., Feng, B. & Chakrabarti, S. miR-195 regulates SIRT1-mediated changes in diabetic retinopathy. Diabetologia 57, 1037–1046 (2014).

    CAS  PubMed  Google Scholar 

  61. Thounaojam, M. C. et al. MicroRNA-34a (miR-34a) mediates retinal endothelial cell premature senescence through mitochondrial dysfunction and loss of antioxidant activities. Antioxidants 8, 328 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Diabetes, C. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

    Google Scholar 

  63. Nentwich, M. M. & Ulbig, M. W. Diabetische retinopathie. Der Diabetol. 6, 491–502 (2010).

    Google Scholar 

  64. Antonetti, D. A., Silva, P. S. & Stitt, A. W. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat. Rev. Endocrinol. 17, 195–206 (2021).

    PubMed  PubMed Central  Google Scholar 

  65. Mattapallil, M. J. et al. The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest. Ophthalmol. Vis. Sci. 53, 2921–2927 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Melsted, P. et al. Modular, efficient and constant-memory single-cell RNA-seq preprocessing. Nat. Biotechnol. 39, 813–818 (2021).

    CAS  PubMed  Google Scholar 

  67. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Skinnider, M. A. et al. Cell type prioritization in single-cell data. Nat. Biotechnol. 39, 30–34 (2021).

    CAS  PubMed  Google Scholar 

  69. Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.S. holds the Wolfe Professorship in Translational Research, a Canada Research Chair in Retinal Cell Biology as well as the Fonds de Recherche en Ophtalmologie de l’Université de Montréal Endowed Chair. S.C.-G. holds a fellowship from the Fonds de Recherche du Québec - Santé (FRQ-S) and the Montreal Diabetes Research Center. This work was supported by UNITY Biotechnology. Other funding was provided from operating grants to P.S. from Diabetes Canada (DI-3-18-5444-PS), the Canadian Institutes of Health Research (Foundation grant 353770), The Alcon Research Institute Senior Investigator Award and The Heart and Stroke Foundation of Canada (G-16-00014658) and BrightFocus Foundation (M2022015I). Additional support was provided by the Fonds de Recherche en Ophtalmologie de l’Université de Montréal (FROUM), the Réseau en Recherche en Santé de la Vision (RRSV) and the FRQ-S/RRSV-funded Single-Cell Academy. We thank V. Guber for the management of the mouse colony, the research assistants at the animal facilities, and M. Sergeev at the microscope core facilities of the Hospital Maisonneuve-Rosemont Research Center for all their technical support throughout the duration of this project. We also thank H. Findlay and G. Mawambo for the technical assistance provided, and B. Larrivée for reagents.

Author information

Authors and Affiliations

Authors

Contributions

P.S., S.C.-G., J. Dananberg, A.G. and L.S. designed the study with contribution from P.R.T.; S.C.-G., F.F., R.D.-M., G.C., G.B., I.H., R.R., R.J. and P.P. performed research; F.A.R. provided human specimens; S.C.-G., F.F., R.D.-M., G.C., G.B., R.R., M.B., A.D., S.C., P.P., P.R.T., P.J.B. and P.S. analyzed data; S.C.-G. prepared the figures; P.S. and S.C.-G. wrote the paper with contributions from P.R.T., A.G., F.A.M., S.K., D.R., J. Dananberg, P.J.B., A.M.W. and M.H. All authors revised and approved the submitted version of the paper.

Corresponding author

Correspondence to Przemyslaw Sapieha.

Ethics declarations

Competing interests

P.S., J. Dananberg, A.G., L.S. and A.N. are executives at UNITY Biotechnology. N.D. is the founder of UNITY Biotechnology. S.K., D.R., L.M., P.P., P.J.B., A.N., J.D., L.S. and P.R.T. were employees of UNITY Biotechnology during the time this project was developed and hold shares in the company. S.C.-G., R.D.-M., F.F., G.C., A.D., A.M.W. and J.-S.J. have contract work with UNITY Biotechnology. The other authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks William Keyes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Michael Basson, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 DME and nAMD patients enrolled in NCT04537884 and treated with UBX1325 (demographics).

Supplementary information

Supplementary Information

Supplementary Fig. 1. mRNA expression of OCLN and CDH5 in glucose-treated HRMECs. Relative to Fig. 2. Supplementary Fig. 2. UBX1967 selectively induces apoptosis in radiation-induced senescent human retina microvascular ECs. Supplementary Fig. 3. UBX1967 selectively induces apoptosis in high-glucose-induced senescent human retina microvascular ECs. Supplementary Fig. 4. Effect of a single dose of UBX1325 in patients with nAMD. Relative to Fig. 4. Supplementary Table 1. Human vitreous patient data Supplementary Table 2. Human histology patient data Supplementary Table 3. UBX0601 pharmacokinetics in vitro. Supplementary Table 4. Ocular TEAEs by severity of all patients administered UBX1325 (DME + nAMD patients). Supplementary Table 5. Summary of BCVA in DME patients (course of 24 weeks). Supplementary Table 6. Primary antibodies list. Supplementary Table 7. RT–qPCR primer list. Supplementary Note 1. Clinical trial protocol. Supplementary Note 2. Clinical trial STROBE checklist. Supplementary Note 3. Clinical trial statistical analysis plan.

Reporting Summary

Source data

Source Data Fig. 1

Unprocessed western blots (combined file).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespo-Garcia, S., Fournier, F., Diaz-Marin, R. et al. Therapeutic targeting of cellular senescence in diabetic macular edema: preclinical and phase 1 trial results. Nat Med 30, 443–454 (2024). https://doi.org/10.1038/s41591-024-02802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-024-02802-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research