Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Membrane metalloprotease TRABD2A restricts HIV-1 progeny production in resting CD4+ T cells by degrading viral Gag polyprotein

Abstract

Resting CD4+ T cells are highly resistant to the production of human immunodeficiency virus type 1 (HIV-1). However, the mechanism by which resting CD4+ T cells restrict such production in the late viral replication phase of infection has remained unclear. In this study, we found that the cell membrane metalloprotease TRAB domain-containing protein 2A (TRABD2A) inhibited this production in resting CD4+ T cells by degrading the virion structural precursor polyprotein Gag at the plasma membrane. Depletion or inhibition of metalloprotease activity by TRABD2A profoundly enhanced HIV-1 production in resting CD4+ T cells. TRABD2A expression was much higher in resting CD4+ T cells than in activated CD4+ T cells and was considerably reduced by T cell activation. Moreover, reexpressing TRABD2A reinforced the resistance of activated CD4+ T cells to the production of HIV-1 progeny. Collectively, these results elucidate the molecular mechanism employed by resting CD4+ T cells to potently restrict the assembly and production of HIV-1 progeny.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TRABD2A is mainly expressed in resting CD4+ T cells.
Fig. 2: TRABD2A expression is inversely correlated with plasma viral loads in vivo.
Fig. 3: Identification of TRABD2A as a potent restriction factor for HIV-1 infection.
Fig. 4: TRABD2A requires metallic cations to restrict HIV-1 infection.
Fig. 5: TRABD2A degrades the HIV-1 Gag polyprotein precursor at the plasma membrane.
Fig. 6: TRABD2A metalloprotease activity restricts HIV-1 progeny production in resting CD4+ T cells.
Fig. 7: Depletion of SAMHD1 promotes HIV-1 progeny production in resting CD4+ T cells only when TRABD2A protease is inhibited.
Fig. 8: TRABD2A restricts HIV-1 production ex vivo.

Similar content being viewed by others

Data availability

RNA-seq data generated for this study (Fig. 1b) have been deposited in the Sequence Read Archive under accession code PRJNA522052.

References

  1. Sundquist, W. I. & Kräusslich, H. G. HIV-1 assembly, budding, and maturation. Cold Spring Harb. Perspect. Med. 2, a006924 (2012).

    Article  Google Scholar 

  2. Freed, E. O. HIV-1 assembly, release and maturation. Nat. Rev. Microbiol. 13, 484–496 (2015).

    Article  CAS  Google Scholar 

  3. Hogue, I. B., Grover, J. R., Soheilian, F., Nagashima, K. & Ono, A. Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane. J. Virol. 85, 9749–9766 (2011).

    Article  CAS  Google Scholar 

  4. Ono, A., Ablan, S. D., Lockett, S. J., Nagashima, K. & Freed, E. O. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc. Natl Acad. Sci. USA 101, 14889–14894 (2004).

    Article  CAS  Google Scholar 

  5. Ono, A., Orenstein, J. M. & Freed, E. O. Role of the Gag matrix domain in targeting human immunodeficiency virus type 1 assembly. J. Virol. 74, 2855–2866 (2000).

    Article  CAS  Google Scholar 

  6. Doitsh, G. et al. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 143, 789–801 (2010).

    Article  CAS  Google Scholar 

  7. Ganesh, L. et al. The gene product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes. Nature 426, 853–857 (2003).

    Article  CAS  Google Scholar 

  8. Stevenson, M., Stanwick, T. L., Dempsey, M. P. & Lamonica, C. A. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J. 9, 1551–1560 (1990).

    Article  CAS  Google Scholar 

  9. Zack, J. et al. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61, 213–222 (1990).

    Article  CAS  Google Scholar 

  10. Dai, J. et al. Human immunodeficiency virus integrates directly into naive resting CD4+ T cells but enters naive cells less efficiently than memory cells. J. Virol. 83, 4528–4537 (2009).

    Article  CAS  Google Scholar 

  11. Plesa, G. et al. Addition of deoxynucleosides enhances human immunodeficiency virus type 1 integration and 2LTR formation in resting CD4+ T cells. J. Virol. 81, 13938–13942 (2007).

    Article  CAS  Google Scholar 

  12. Yoder, A. et al. HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell 134, 782–792 (2008).

    Article  CAS  Google Scholar 

  13. Pan, X., Baldauf, H. M., Keppler, O. T. & Fackler, O. T. Restrictions to HIV-1 replication in resting CD4+ T lymphocytes. Cell Res. 23, 876–885 (2013).

    Article  CAS  Google Scholar 

  14. Baldauf, H. M. et al. SAMHD1 restricts HIV-1 infection in resting CD4+ T cells. Nat. Med. 18, 1682–1689 (2012).

    Article  CAS  Google Scholar 

  15. Descours, B. et al. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells. Retrovirology 9, 87 (2012).

    Article  CAS  Google Scholar 

  16. Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011).

    Article  CAS  Google Scholar 

  17. Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011).

    Article  CAS  Google Scholar 

  18. Pace, M. et al. Directly infected resting CD4+ T cells can produce HIV Gag without spreading infection in a model of HIV latency. PLoS Pathog. 8, e1002818 (2012).

    Article  CAS  Google Scholar 

  19. Baxter, A. E. et al. Single-cell characterization of viral translation-competent reservoirs in hiv-infected individuals. Cell Host Microbe 20, 368–380 (2016).

    Article  CAS  Google Scholar 

  20. DeMaster, L. K. et al. A subset of CD4/CD8 double-negative T cells expresses HIV proteins in patients on antiretroviral therapy. J. Virol. 90, 2165–2179 (2015).

    Article  Google Scholar 

  21. Graf, E. H. et al. Gag-positive reservoir cells are susceptible to HIV-specific cytotoxic T lymphocyte mediated clearance in vitro and can be detected in vivo. PLoS One 8, e71879 (2013).

    Article  CAS  Google Scholar 

  22. Chavez, L., Calvanese, V. & Verdin, E. HIV latency is established directly and early in both resting and activated primary CD4 T cells. PLoS Pathog. 11, e1004955 (2015).

    Article  Google Scholar 

  23. Zhang, X. et al. Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation. Cell 149, 1565–1577 (2012).

    Article  CAS  Google Scholar 

  24. Zhang, X. et al. Characterization of Tiki, a new family of Wnt-specific metalloproteases. J. Biol. Chem. 291, 2435–2443 (2016).

    Article  CAS  Google Scholar 

  25. Sanchez-Pulido, L. & Ponting, C. P. Tiki, at the head of a new superfamily of enzymes. Bioinformatics 29, 2371–2374 (2013).

    Article  CAS  Google Scholar 

  26. Li, R. et al. TIKI2 suppresses growth of osteosarcoma by targeting Wnt/β-catenin pathway. Mol. Cell. Biochem. 392, 109–116 (2014).

    Article  CAS  Google Scholar 

  27. Bouldin, C. M. & Kimelman, D. Taking a bite out of Wnts. Cell Res. 22, 1621–1623 (2012).

    Article  CAS  Google Scholar 

  28. Liang, G. et al. RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase. Proc. Natl Acad. Sci. USA 110, 2246–2251 (2013).

    Article  CAS  Google Scholar 

  29. Hatziioannou, T., Martin-Serrano, J., Zang, T. & Bieniasz, P. Matrix-induced inhibition of membrane binding contributes to human immunodeficiency virus type 1 particle assembly defects in murine cells. J. Virol. 79, 15586–15589 (2005).

    Article  CAS  Google Scholar 

  30. Agosto, L. M. et al. HIV-1 integrates into resting CD4+ T cells even at low inoculums as demonstrated with an improved assay for HIV-1 integration.Virology 368, 60–72 (2007).

    Article  CAS  Google Scholar 

  31. Zhou, Y., Zhang, H., Siliciano, J. & Siliciano, R. Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J. Virol. 79, 2199–2210 (2005).

    Article  CAS  Google Scholar 

  32. Tang, S., Patterson, B. & Levy, J. A. Highly purified quiescent human peripheral blood CD4+ T cells are infectible by human immunodeficiency virus but do not release virus after activation. J. Virol. 69, 5659–5665 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, Q., Zhang, X., Han, Y., Wang, X. & Gao, G. M2BP inhibits HIV-1 virion production in a vimentin filaments-dependent manner. Sci. Rep. 6, 32736 (2016).

    Article  CAS  Google Scholar 

  34. Santoni de Sio, F. R. & Trono, D. APOBEC3G-depleted resting CD4+ T cells remain refractory to HIV1 infection. PLoS One 4, e6571 (2009).

    Article  Google Scholar 

  35. Liang, G. et al. TGF-β suppression of HBV RNA through AID-dependent recruitment of an RNA exosome complex. PLoS Pathog. 11, e1004780 (2015).

    Article  Google Scholar 

  36. Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article  Google Scholar 

  37. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  Google Scholar 

  38. Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  Google Scholar 

  39. Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

    Article  CAS  Google Scholar 

  40. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  Google Scholar 

  41. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all our laboratory members for contributing to this study. We also thank S. Yu, Y. Xiong, J. Ouyang and R. Wang for their technical support. This study was supported by the Mega Projects of National Science Research for the 13th Five-Year Plan (grant no. 2017ZX10201101), Development Plan of Innovative Group of the Ministry of Education 2016 (grant no. IRT_16R70) and the National Natural Science Foundation of China (grant no. 81273238).

Author information

Authors and Affiliations

Authors

Contributions

G.L. conceived and directed the whole research project. Y.Q., W.G., L.Z., M.L., J.D., X.Z., H.D. and H. Sun performed the experiments and analyzed the data. W.G., H. Sun and H. Shang provided intellectual advice on the experimental design. G.L. wrote the manuscript.

Corresponding authors

Correspondence to Guoxin Liang or Hong Shang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Supplementary Data 1–5 and Supplementary Tables 1–3.

Reporting Summary

Source Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, G., Zhao, L., Qiao, Y. et al. Membrane metalloprotease TRABD2A restricts HIV-1 progeny production in resting CD4+ T cells by degrading viral Gag polyprotein. Nat Immunol 20, 711–723 (2019). https://doi.org/10.1038/s41590-019-0385-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-019-0385-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology