Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Near-cognate tRNAs increase the efficiency and precision of pseudouridine-mediated readthrough of premature termination codons

Abstract

Programmable RNA pseudouridylation has emerged as a new type of RNA base editor to suppress premature termination codons (PTCs) that can lead to truncated and nonfunctional proteins. However, current methods to correct disease-associated PTCs suffer from low efficiency and limited precision. Here we develop RESTART v3, which uses near-cognate tRNAs to improve the readthrough efficiency of pseudouridine-modified PTCs. We show an average of ~5-fold (range: 2.1- to 9.5-fold) higher editing efficiency than RESTART v2 in cultured cells and achieve functional PTC readthrough in disease cell models of cystic fibrosis and Hurler syndrome. Furthermore, RESTART v3 enables accurate incorporation of the original amino acid for nearly half of the PTC sites, considering the naturally occurring frequencies of sense-to-nonsense codons, without affecting normal termination codons. Although off-target sites were detected, we did not observe changes to the coding information or the expression level of transcripts, and the overall natural tRNA abundance remained constant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Near-cognate tRNAs improve the readthrough efficiency of RESTART.
Fig. 2: Screening of near-cognate tRNAs to improve readthrough efficiency of all three PTCs.
Fig. 3: RESTART v3 can achieve accurate correction of PTC sites.
Fig. 4: Characterizing the specificity of RESTART v3.
Fig. 5: Functional PTC readthrough in CFTR and IDUA disease cell models.

Similar content being viewed by others

Data availability

The sequence data generated in this study have been deposited in the NCBI Gene Expression Omnibus (GEO), under accession code GSE237633 (ref. 57). Source data are provided with this paper.

References

  1. Krawczak, M., Ball, E. V. & Cooper, D. N. Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am. J. Hum. Genet. 63, 474–488 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mort, M., Ivanov, D., Cooper, D. N. & Chuzhanova, N. A. A meta-analysis of nonsense mutations causing human genetic disease. Hum. Mutat. 29, 1037–1047 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Cheng, S. H. et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Ballabio, A. & Gieselmann, V. Lysosomal disorders: from storage to cellular damage. Biochim. Biophys. Acta. 1793, 684–696 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Howard, M., Frizzell, R. A. & Bedwell, D. M. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat. Med. 2, 467–469 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Welch, E. M. et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 447, 87–91 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Dabrowski, M., Bukowy-Bieryllo, Z. & Zietkiewicz, E. Advances in therapeutic use of a drug-stimulated translational readthrough of premature termination codons. Mol. Med. 24, 25 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lueck, J. D. et al. Engineered transfer RNAs for suppression of premature termination codons. Nat. Commun. 10, 822 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, J. et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature 604, 343–348 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Albers, S. et al. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 618, 842–848 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Temple, G. F., Dozy, A. M., Roy, K. L. & Kan, Y. W. Construction of a functional human suppressor tRNA gene: an approach to gene therapy for β-thalassaemia. Nature 296, 537–540 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Kiselev, A. V. et al. Suppression of nonsense mutations in the Dystrophin gene by a suppressor tRNA gene. Mol. Biol. (Mosk). 36, 43–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Cox, D. B. T. et al. RNA editing with CRISPR–Cas13. Science 358, 1019–1027 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Merkle, T. et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Qu, L. et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Katrekar, D. et al. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nat. Methods 16, 239–242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vogel, P. et al. Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs. Nat. Methods 15, 535–538 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, X. et al. Programmable C-to-U RNA editing using the human APOBEC3A deaminase. EMBO J. 39, e104741 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382–386 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rauch, S. et al. Programmable RNA-guided RNA effector proteins built from human parts. Cell 178, 122–134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reautschnig, P. et al. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat. Biotechnol. 40, 759–768 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Yi, Z. et al. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat. Biotechnol. 40, 946–955 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Katrekar, D. et al. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat. Biotechnol. 40, 938–945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu, C. et al. Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nat. Methods 18, 499–506 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194–197 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Song, J. et al. CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons. Mol. Cell 83, 139–155 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Adachi, H. et al. Targeted pseudouridylation: an approach for suppressing nonsense mutations in disease genes. Mol. Cell 83, 637–651 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Montes, M. & Martinez, N. M. Rewriting the message: harnessing RNA pseudouridylation to tackle disease. Mol. Cell 83, 503–506 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Karijolich, J. & Yu, Y. T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Geslain, R. & Pan, T. Functional analysis of human tRNA isodecoders. J. Mol. Biol. 396, 821–831 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, M. et al. Quantitative profiling of pseudouridylation landscape in the human transcriptome. Nat. Chem. Biol. 19, 1185–1195 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Kotha, K. & Clancy, J. P. Ivacaftor treatment of cystic fibrosis patients with the G551D mutation: a review of the evidence. Ther. Adv. Respir. Dis. 7, 288–296 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Kerem, E. Pharmacologic therapy for stop mutations: how much CFTR activity is enough? Curr. Opin. Pulm. Med. 10, 547–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Bunge, S. et al. Genotype-phenotype correlations in mucopolysaccharidosis type I using enzyme kinetics, immunoquantification and in vitro turnover studies. Biochim. Biophys. Acta 1407, 249–256 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Oussoren, E. et al. Residual α-L-iduronidase activity in fibroblasts of mild to severe Mucopolysaccharidosis type I patients. Mol. Genet. Metab. 109, 377–381 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Sun, H., Li, K., Liu, C. & Yi, C. Regulation and functions of non-m(6)A mRNA modifications. Nat. Rev. Mol. Cell Biol. 24, 714–731 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Kierzek, E. et al. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res. 42, 3492–3501 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Keeling, K. M., Xue, X., Gunn, G. & Bedwell, D. M. Therapeutics based on stop codon readthrough. Annu. Rev. Genomics Hum. Genet. 15, 371–394 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McClain, W. H., Foss, K., Jenkins, R. A. & Schneider, J. Nucleotides that determine Escherichia coli tRNA(Arg) and tRNA(Lys) acceptor identities revealed by analyses of mutant opal and amber suppressor tRNAs. Proc. Natl Acad. Sci. USA 87, 9260–9264 (1990).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giege, R. & Eriani, G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res. 51, 1528–1570 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pechmann, S. & Frydman, J. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat. Struct. Mol. Biol. 20, 237–243 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Porter, J. J., Heil, C. S. & Lueck, J. D. Therapeutic promise of engineered nonsense suppressor tRNAs. Wiley Interdiscip. Rev. RNA 12, e1641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eyler, D. E. et al. Pseudouridinylation of mRNA coding sequences alters translation. Proc. Natl Acad. Sci. USA 116, 23068–23074 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Prakash, T. P. et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 42, 8796–8807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zheng, G. et al. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12, 835–837 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, X. et al. Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat. Chem. Biol. 12, 311–316 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Lu, B. et al. Transposase-assisted tagmentation of RNA/DNA hybrid duplexes. eLife 9, e54919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eisenberg, E. & Levanon, E. Y. Human housekeeping genes, revisited. Trends Genet. 29, 569–574 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Hounkpe, B. W., Chenou, F., de Lima, F. & De Paula, E. V. HRT Atlas v1.0 database: redefining human and mouse housekeeping genes and candidate reference transcripts by mining massive RNA-seq datasets. Nucleic Acids Res. 49, D947–D955 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Luo, N. et al. Near-cognate tRNAs increase the efficiency and precision of pseudouridine-mediated readthrough of premature termination codons. GEO. www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE237633 (2024).

Download references

Acknowledgements

The authors would like to thank the National Center for Protein Sciences at Peking University in Beijing, China, for assistance with the 4150 TapeStation System, Cell Imaging Multimode Reader (BioTek Cytation 5) and mass spectrometry; D. Liu and Q. Zhang for their help with mass spectrometry sample pretreatment and data analysis; the Center for Quantitative Biology at Peking University for assistance with the ImageXpress Micro 4 high-content imaging system and X. Li for her help; High Performance Computing Platform of the Center for Life Science (Peking University) for assistance with the analysis; and the Large-Scale Instrument Platform of State Key Laboratory of Natural and Biomimetic Drugs at Peking University for its advance and support in technology; Cystic Fibrosis Foundation for providing 16HBEge cells; and M. Zhang and Y. Ma for their discussion. This work was supported by the Ministry of Agriculture and Rural Affairs of China (NK2022010102 to C.Y.), the Natural Science Foundation of China (21825701 to C.Y. and 32200467 to Q.H.), the Ministry of Science and Technology of China (2023YFC3402200 to C.Y.), the Beijing Municipal Science and Technology Commission (Z231100002723005 to C.Y.) and the China Postdoctoral Science Foundation (2022M710222 to Q.H.).

Author information

Authors and Affiliations

Authors

Contributions

C.Y. and N.L. conceived the project and designed the experiments. N.L., L.D. and Q.H. performed the experiments with the help of J.S., H.S. and Y.G. N.L. and L.D. designed and conducted all sample preparation for NGS. W.L. performed the bioinformatic analysis with the help of H.W. C.Y. supervised the project. C.Y., N.L., L.D. and Q.H. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Chengqi Yi.

Ethics declarations

Competing interests

A patent has been filed relating to the data presented.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6.

Reporting Summary

Supplementary Tables

Supplementary Table 1: Sequence of tRNA and primer. Supplementary Table 2: The composition of each version of the RESTART system (a) and the near-cognate tRNAs used in RESTART v3 and v3-mini (b). Supplementary Table 3: Primer information. Supplementary Table 4: Survey of human pathogenic nonsense mutations. Supplementary Table 5: list of detected off-target sites. Supplementary Table 6: Identification of the corresponding amino acid(s) incorporated at the off-target pseudouridine sites.

Supplementary Data 1

Statistical supporting data of Supplementary Figs. 1–6.

Source data

Source Data Figs. 1–5.

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, N., Huang, Q., Dong, L. et al. Near-cognate tRNAs increase the efficiency and precision of pseudouridine-mediated readthrough of premature termination codons. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-024-02165-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research