Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Wearable sensors for monitoring marine environments and their inhabitants

Abstract

Human societies depend on marine ecosystems, but their degradation continues. Toward mitigating this decline, new and more effective ways to precisely measure the status and condition of marine environments are needed alongside existing rebuilding strategies. Here, we provide an overview of how sensors and wearable technology developed for humans could be adapted to improve marine monitoring. We describe barriers that have slowed the transition of this technology from land to sea, update on the developments in sensors to advance ocean observation and advocate for more widespread use of wearables on marine organisms in the wild and in aquaculture. We propose that large-scale use of wearables could facilitate the concept of an ‘internet of marine life’ that might contribute to a more robust and effective observation system for the oceans and commercial aquaculture operations. These observations may aid in rationalizing strategies toward conservation and restoration of marine communities and habitats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current marine sensors and communication technologies.
Fig. 2: Wearable technology solutions and developments for monitoring marine environments and their inhabitants.
Fig. 3: Anthropogenic impacts on the marine environment and examples of marine organisms that could potentially benefit from an internet of marine life.

Similar content being viewed by others

References

  1. Hussey, N. E. et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642 (2015).

    Article  PubMed  Google Scholar 

  2. Harcourt, R. et al. Animal-borne telemetry: an integral component of the ocean observing toolkit. Front. Mar. Sci. 6, 326 (2019).

    Article  Google Scholar 

  3. Wilson, M. W. et al. Ecological impacts of human-induced animal behaviour change. Ecol. Lett. 23, 1522–1536 (2020).

    Article  PubMed  Google Scholar 

  4. Altman, S. A. & Altmann, J. The transformation of behaviour field studies. Anim. Behav. 65, 413–423 (2003).

    Article  Google Scholar 

  5. Roquet, F. et al. Ocean observations using tagged animals. Oceanography 30, 139 (2017).

    Article  Google Scholar 

  6. Cooke, S. J. et al. Biotelemetry: a mechanistic approach to ecology. Trends Ecol. Evol. 19, 334–343 (2004).

    Article  Google Scholar 

  7. Meekan, M. G. et al. The ecology of human mobility. Trends Ecol. Evol. 32, 198–210 (2017).

    Article  Google Scholar 

  8. Lennox, R. J. et al. Envisioning the future of aquatic animal tracking: technology, science, and application. BioScience 67, 884–896 (2017).

    Article  Google Scholar 

  9. Lee, M. A. et al. Can fish and cell phones teach us about our health? ACS Sens. 4, 2566–2570 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, J., Campbell, A. S., de Ávila, B. E. F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Menni, C. et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. 26, 1037–1040 (2020).

  12. Neethirajan, S. Recent advances in wearable sensors for animal health management. Sens. Bio-Sens. Res. 12, 15–29 (2017).

    Google Scholar 

  13. Wright, S. et al. SCUBA divers as oceanographic samplers: the potential of dive computers to augment aquatic temperature monitoring. Sci. Rep. 6, 30164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilson, A. D. M., Wikelski, M., Wilson, R. P. & Cooke, S. J. Utility of biological sensor tags in animal conservation. Conserv. Biol. 29, 1065–1075 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Costa, D. P., Breed, G. A. & Robinson, P. W. New insights into pelagic migrations: implications for ecology and conservation. Annu. Rev. Ecol. Evol. Syst. 43, 73–96 (2012).

    Article  Google Scholar 

  16. Jewell, Z. Effect of monitoring technique on quality of conservation science. Conserv. Biol. 27, 501–508 (2013).

    Article  PubMed  Google Scholar 

  17. Todd Jones, T. et al. Calculating the ecological impacts of animal-borne instruments on aquatic organisms. Methods Ecol. Evol. 4, 1178–1186 (2013).

    Article  Google Scholar 

  18. Russell, A. L., Morrison, S. J., Moschonas, E. H. & Papaj, D. R. Patterns of pollen and nectar foraging specialization by bumblebees over multiple timescales using RFID. Sci. Rep. 7, 42448 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Scott, R., Biastoch, A., Roder, C., Stiebens, V. A. & Eizaguirre, C. Nano-tags for neonates and ocean-mediated swimming behaviours linked to rapid dispersal of hatchling sea turtles. Proc. R. Soc. B Biol. Sci. 281, 20141209 (2014).

    Article  Google Scholar 

  20. Nassar, J. M. et al. Compliant lightweight non-invasive standalone ‘Marine Skin’ tagging system. npj Flex. Electron. 2, 13 (2018).

    Google Scholar 

  21. Shaikh, S. F. et al. Noninvasive featherlight wearable compliant ‘Marine Skin’: standalone multisensory system for deep-sea environmental monitoring. Small 15, 1804385 (2019).

    Article  Google Scholar 

  22. Ropert-Coudert, Y. & Wilson, R. P. Trends and perspectives in animal-attached remote sensing. Front. Ecol. Environ. 3, 437–444 (2005).

    Article  Google Scholar 

  23. Johnson, M. P. & Tyack, P. L. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J. Ocean. Eng. 28, 3–12 (2003).

    Article  Google Scholar 

  24. Bhushan, B. Biomimetics: lessons from nature—an overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1445–1486 (2009).

    Article  CAS  Google Scholar 

  25. Xiao, F., Wang, L. & Duan, H. Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites. Biotechnol. Adv. 34, 234–249 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Saylan, Y., Akgönüllü, S., Yavuz, H., Ünal, S. & Denizli, A. Molecularly imprinted polymer based sensors for medical applications. Sensors 19, 1279 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davaji, B. et al. A patterned single layer graphene resistance temperature sensor. Sci. Rep. 7, 8811 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kano, S., Dobashi, Y. & Fujii, M. Silica nanoparticle-based portable respiration sensor for analysis of respiration rate, pattern, and phase during exercise. IEEE Sens. Lett. 2, 1–4 (2018).

    Article  Google Scholar 

  29. Parpura, V. Tissue engineering: nanoelectronics for the heart. Nat. Nanotechnol. 11, 738–739 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Kumar, A. et al. Nanotechnology for neuroscience: promising approaches for diagnostics, therapeutics and brain activity mapping. Adv. Funct. Mater. 27, 1700489 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen, T. H., Lin, C. C. & Meng, P. J. Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio). J. Hazard. Mater. 277, 134–140 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Garnier, M., Sabbah, M., Ménager, C. & Griffete, N. Hybrid molecularly imprinted polymers: the future of nanomedicine? Nanomaterials 11, 3091 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, M. A. et al. Implanted nanosensors in marine organisms for physiological biologging: design, feasibility, and species variability. ACS Sens. 4, 32–43 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Bailleul, F., Vacquie-Garcia, J. & Guinet, C. Dissolved oxygen sensor in animal-borne instruments: an innovation for monitoring the health of oceans and investigating the functioning of marine ecosystems. PLoS ONE 10, e0132681 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Keates, T. R. et al. Chlorophyll fluorescence as measured in situ by animal-borne instruments in the northeastern Pacific Ocean. J. Mar. Syst. 203, 103265 (2020).

    Article  Google Scholar 

  36. Chung, H., Lee, J. & Lee, W. Y. A review: marine bio-logging of animal behaviour and ocean environments. Ocean Sci. J. 56, 117–131 (2021).

    Article  Google Scholar 

  37. Stehfest, K. M., Carter, C. G., McAllister, J. D., Ross, J. D. & Semmens, J. M. Response of Atlantic salmon Salmo salar to temperature and dissolved oxygen extremes established using animal-borne environmental sensors. Sci. Rep. 7, 4545 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Aldawood, F. K., Andar, A. & Desai, S. A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers 13, 2815 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tehrani, F. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Zhu, D. D. et al. Colorimetric microneedle patches for multiplexed transdermal detection of metabolites. Biosens. Bioelectron. 212, 114412 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Joshi, P., Riley, P. R., Mishra, R., Machekposhti, S. A. & Narayan, R. Transdermal polymeric microneedle sensing platform for fentanyl detection in biofluid. Biosensors 12, 198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sartawi, Z., Blackshields, C. & Faisal, W. Dissolving microneedles: applications and growing therapeutic potential. J. Control. Release 348, 186–205 (2022).

    CAS  Google Scholar 

  43. Nguyen, T. T., Nguyen, T. T. D., Tran, N. M. A. & Vo, G. V. Advances of microneedles in hormone delivery. Biomed. Pharmacother. 145, 112393 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Zhi, D. et al. Microneedles for gene and drug delivery in skin cancer therapy. J. Control. Release 335, 158–177 (2021).

    CAS  Google Scholar 

  45. Cao, J., Li, X., Liu, Y., Zhu, G. & Li, R. W. Liquid metal-based electronics for on-skin healthcare. Biosensors 13, 84 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu, S. et al. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Funct. Mater. 23, 2308–2314 (2013).

    Article  CAS  Google Scholar 

  47. Karimi, M. A. et al. Flexible tag design for semi-continuous wireless data acquisition from marine animals. Flex. Print. Electron. 4, 035006 (2019).

    Article  Google Scholar 

  48. Kulyk, B. et al. A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Crit. Rev. Solid State Mater. Sci. 47, 309–355 (2022).

    Article  CAS  Google Scholar 

  49. Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, J. et al. Laser-induced graphene (LIG)-driven medical sensors for health monitoring and diseases diagnosis. Microchim. Acta 189, 54 (2022).

    Article  CAS  Google Scholar 

  51. Kaidarova, A. & Kosel, J. Physical sensors based on laser-induced graphene: a review. IEEE Sens. J. 21, 12426–12443 (2021).

    Article  CAS  Google Scholar 

  52. Kaidarova, A. et al. Wearable multifunctional printed graphene sensors. npj Flex. Electron. 3, 15 (2019).

    Google Scholar 

  53. Kaidarova, A. et al. Enhanced graphene sensors via multi-lasing fabrication. IEEE Sens. J. 21, 18562–18570 (2021).

    Article  CAS  Google Scholar 

  54. Kaidarova, B. A. et al. Flexible Hall sensor made of laser-scribed graphene. npj Flex. Electron. 5, 2 (2021).

    CAS  Google Scholar 

  55. Kaidarova, A. et al. Flexible and biofouling independent salinity sensor. Adv. Mater. Interfaces 5, 1801110 (2018).

    Article  Google Scholar 

  56. Carvalho, A. F., Fernandes, A. J. S., Martins, R., Fortunato, E. & Costa, F. M. Laser-induced graphene piezoresistive sensors synthesized directly on cork insoles for gait analysis. Adv. Mater. Technol. 5, 2000630 (2020).

    Article  CAS  Google Scholar 

  57. Yan, Z. et al. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv. Funct. Mater. 31, 2100709 (2021).

    Article  CAS  Google Scholar 

  58. Kaidarova, A. et al. Laser-printed, flexible graphene pressure sensors. Glob. Chall. 4, 2000001 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wei, S. et al. Flexible large e-skin array based on patterned laser-induced graphene for tactile perception. Sens. Actuators A Phys. 334, 113308 (2022).

    Article  CAS  Google Scholar 

  60. Wanjari, V. P., Reddy, A. S., Duttagupta, S. P. & Singh, S. P. Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective. Environ. Sci. Pollut. Res. Int. 30, 42643–42657 (2022).

    Article  PubMed  Google Scholar 

  61. Barbhuiya, N. H. et al. Virus inactivation in water using laser-induced graphene filters. Materials 14, 3179 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee, S. J. et al. Heteroatom-doped graphene-based materials for sustainable energy applications: a review. Renew. Sustain. Energy Rev. 143, 110849 (2021).

    Article  CAS  Google Scholar 

  63. Swanepoel, L. et al. A facile magnetic system for tracking of medical devices. Adv. Mater. Technol. 6, 2100346 (2021).

    Article  CAS  Google Scholar 

  64. Kaidarova, A. et al. Tunable, flexible composite magnets for marine monitoring applications. Adv. Eng. Mater. 20, 1800229 (2018).

    Article  Google Scholar 

  65. Rossbach, S. et al. Giant clams in shallow reefs: UV-resistance mechanisms of Tridacninae in the Red Sea. Coral Reefs 39, 1345–1360 (2020).

    Article  Google Scholar 

  66. Almansouri, A. S. et al. An imperceptible magnetic skin. Adv. Mater. Technol. 4, 1970052 (2019).

    Article  Google Scholar 

  67. Almansouri, A. S. Tracking eye movement using a composite magnet. IEEE Trans. Magn. 58, 1–5 (2022).

    Article  Google Scholar 

  68. Yebra, D. M., Kiil, S. & Dam-Johansen, K. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 50, 75–104 (2004).

    Article  CAS  Google Scholar 

  69. Dicken, M. L., Nance, S. P. & Smale, M. J. Sessile biofouling on tags from recaptured raggedtooth sharks (Carcharias taurus) and their effects on tagging studies. Mar. Freshwater Res. 62, 359–364 (2011).

    Article  CAS  Google Scholar 

  70. Huang, J., Wang, H., He, C., Zhang, Q. & Jing, L. Underwater acoustic communication and the general performance evaluation criteria. Front. Inf. Technol. Electron. Eng. 19, 951–971 (2018).

    Article  Google Scholar 

  71. Zia, M. Y. I., Poncela, J. & Otero, P. State-of-the-art underwater acoustic communication modems: classifications, analyses and design challenges. Wirel. Pers. Commun. 116, 1325–1360 (2021).

    Article  Google Scholar 

  72. Cooke, S. J., Woodley, C. M., Eppard, M. B., Brown, R. S. & Nielsen, J. L. Advancing the surgical implantation of electronic tags in fish: a gap analysis and research agenda based on a review of trends in intracoelomic tagging effects studies. Rev. Fish Biol. Fish. 21, 127–151 (2011).

    Article  Google Scholar 

  73. Watkinst, W. A. Reaction of three species of whales Balaenoptera physalus, Megaptera novaeangliae, and Balaenoptera edeni to implanted radio tags. Deep Sea Res. 28, 589–599 (1981).

    Google Scholar 

  74. Liao, H. et al. An additively manufactured 3-D antenna-in-package with quasi-isotropic radiation for marine animals monitoring system. IEEE Antennas Wirel. Propag. Lett. 18, 2384–2388 (2019).

    Article  Google Scholar 

  75. Liao, H., Bilal, R. M. & Shamim, A. A large frequency ratio dual-band microstrip antenna with consistent radiation pattern for internet of sea applications. In 15th European Conference on Antennas and Propagation, EuCAP 2021 1–5 (Institute of Electrical and Electronics Engineers, 2021).

  76. Oubei, H. M. et al. 48 Gbit/s 16-QAM–OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. Opt. Express 23, 23302–23309 (2015).

    Article  PubMed  Google Scholar 

  77. Oubei, H. M. et al. Light based underwater wireless communications. Jpn. J. Appl. Phys. 57, 08PA06 (2018).

    Article  Google Scholar 

  78. Ooi, B. S., Kong, M. & Ng, T. K. Underwater wireless optical communications: opportunity, challenges and future prospects commentary on ‘Recent progress in and perspectives of underwater wireless optical communication’. Prog. Quantum Electron. 73, 100275 (2020).

    Article  Google Scholar 

  79. Kong, M. et al. Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells. Opt. Express 27, 34542–34551 (2019).

    Article  PubMed  Google Scholar 

  80. Sun, X. et al. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication. Opt. Express 26, 12870–12877 (2018).

    Article  PubMed  Google Scholar 

  81. Shen, C. et al. 20-meter underwater wireless optical communication link with 15 Gbps data rate. Opt. Express 24, 25502–25509 (2016).

    Article  PubMed  Google Scholar 

  82. Kong, M. et al. AquaE-lite hybrid-solar-cell receiver-modality for energy-autonomous terrestrial and underwater internet-of-things. IEEE Photonics J. 12, 1–13 (2020).

    Google Scholar 

  83. Kong, M. et al. Survey of energy-autonomous solar cell receivers for satellite–air–ground–ocean optical wireless communication. Prog. Quantum Electron. 74, 100300 (2020).

    Article  Google Scholar 

  84. Filho, J. I. D. O., Trichili, A., Ooi, B. S., Alouini, M. S. & Salama, K. N. Toward self-powered internet of underwater things devices. IEEE Commun. Mag. 58, 68–73 (2020).

    Article  Google Scholar 

  85. Sun, X. et al. Field demonstrations of wide-beam optical communications through water–air interface. IEEE Access 8, 160480–160489 (2020).

    Article  Google Scholar 

  86. Sun, X. et al. Non-line-of-sight methodology for high-speed wireless optical communication in highly turbid water. Opt. Commun. 461, 125264 (2020).

    Article  CAS  Google Scholar 

  87. Shihada, B. et al. Aqua-Fi: delivering internet underwater using wireless optical networks. IEEE Commun. Mag. 58, 84–89 (2020).

    Article  Google Scholar 

  88. Saha, S. S., Sandha, S. S., Garcia, L. A. & Srivastava, M. TinyOdom: hardware-aware efficient neural inertial navigation. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 1–32 (2022).

    Google Scholar 

  89. Chen, C. et al. Deep-learning-based pedestrian inertial navigation: methods, data set, and on-device inference. IEEE Internet Things J. 7, 4431–4441 (2020).

    Google Scholar 

  90. Holton, M. D., Wilson, R. P., Teilmann, J. & Siebert, U. Animal tag technology keeps coming of age: an engineering perspective. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200229 (2021).

    Article  Google Scholar 

  91. Kim, S. et al. Propeller-based underwater piezoelectric energy harvesting system for an autonomous IoT sensor system. J. Korean Phys. Soc. 76, 251–256 (2020).

    Article  Google Scholar 

  92. Zou, H. X. et al. A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting. Energy 217, 119429 (2021).

    Article  Google Scholar 

  93. Li, H. et al. An energy harvesting underwater acoustic transmitter for aquatic animals. Sci. Rep. 6, 33804 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Egbe, K. J. I. et al. Vibrational turbine piezoelectric nanogenerators for energy harvesting in multiphase flow fields. Energy Rep. 7, 6384–6393 (2021).

    Article  Google Scholar 

  95. Wang, Y. et al. Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano 15, 15700–15709 (2021).

    CAS  Google Scholar 

  96. Wang, Y. et al. An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition. Nano Energy 90, 106503 (2021).

    CAS  Google Scholar 

  97. Li, R., Zhang, H., Wang, L. & Liu, G. A contact-mode triboelectric nanogenerator for energy harvesting from marine pipe vibrations. Sensors 21, 1514 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Stanford, M. G. et al. Laser-induced graphene triboelectric nanogenerators. ACS Nano 13, 7166–7174 (2019).

    CAS  Google Scholar 

  99. Rodrigues, C. et al. Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives. Energy Environ. Sci. 13, 2657–2683 (2020).

    Article  CAS  Google Scholar 

  100. Watanabe, Y. Y., Lydersen, C., Fisk, A. T. & Kovacs, K. M. The slowest fish: swim speed and tail-beat frequency of Greenland sharks. J. Exp. Mar. Biol. Ecol. 426–427, 5–11 (2012).

    Article  Google Scholar 

  101. Almansouri, A. S., Salama, K. N. & Kosel, J. Magneto–acoustic resonator for aquatic animal tracking. IEEE Trans. Magn. 55, 1–4 (2019).

    Article  Google Scholar 

  102. Zou, Y. et al. A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10, 2695 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhang, C. et al. Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting. Adv. Mater. Technol. 5, 2000531 (2020).

    Article  CAS  Google Scholar 

  104. Gong, S., Zhang, B., Zhang, J., Wang, Z. L. & Ren, K. Biocompatible poly(lactic acid)-based hybrid piezoelectric and electret nanogenerator for electronic skin applications. Adv. Funct. Mater. 30, 1908724 (2020).

    Article  CAS  Google Scholar 

  105. Rittmann, B. E. Opportunities for renewable bioenergy using microorganisms. Biotechnol. Bioeng. 100, 203–212 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Gizer, G., Önal, U., Ram, M. & Sahiner, N. Biofouling and mitigation methods: a review. Biointerface Res. Appl. Chem. 13, 185 (2023).

    CAS  Google Scholar 

  107. Gomez-Banderas, J. Marine natural products: a promising source of environmentally friendly antifouling agents for the maritime industries. Front. Mar. Sci. 9, 858757 (2022).

    Article  Google Scholar 

  108. Campuzano, S., Pedrero, M., Yáñez-Sedeño, P. & Pingarrón, J. M. Antifouling (bio)materials for electrochemical (bio)sensing. Int. J. Mol. Sci. 20, 423 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Singh, S. P. et al. Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action. ACS Appl. Mater. Interfaces 9, 18238–18247 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Dundar Arisoy, F. et al. Bioinspired photocatalytic shark-skin surfaces with antibacterial and antifouling activity via nanoimprint lithography. ACS Appl. Mater. Interfaces 10, 20055–20063 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Bridger, C. J. & Booth, R. K. The effects of biotelemetry transmitter presence and attachment procedures on fish physiology and behavior. Rev. Fish. Sci. 11, 13–34 (2003).

    Article  Google Scholar 

  112. Geraldi, N. R. & Powers, S. P. Subtle changes in prey foraging behavior have cascading effects in a shallow estuary. Mar. Ecol. Prog. Ser. 427, 51–58 (2011).

    Article  Google Scholar 

  113. Tucker, A. D. Nest site fidelity and clutch frequency of loggerhead turtles are better elucidated by satellite telemetry than by nocturnal tagging efforts: implications for stock estimation. J. Exp. Mar. Biol. Ecol. 383, 48–55 (2010).

    Article  Google Scholar 

  114. Kay, W. P. et al. Minimizing the impact of biologging devices: using computational fluid dynamics for optimizing tag design and positioning. Methods Ecol. Evol. 10, 1222–1233 (2019).

    Article  Google Scholar 

  115. Alex Shorter, K., Murray, M. M., Johnson, M., Moore, M. & Howle, L. E. Drag of suction cup tags on swimming animals: modeling and measurement. Mar. Mamm. Sci. 30, 726–746 (2014).

    Article  Google Scholar 

  116. Chapple, T. K., Gleiss, A. C., Jewell, O. J. D., Wikelski, M. & Block, B. A. Tracking sharks without teeth: a non-invasive rigid tag attachment for large predatory sharks. Anim. Biotelemetry 3, 14 (2015).

    Google Scholar 

  117. van der Hoop, J. M. et al. Swimming energy economy in bottlenose dolphins under variable drag loading. Front. Mar. Sci. 5, 465 (2018).

    Article  Google Scholar 

  118. Seminati, E. et al. Validity and reliability of a novel 3D scanner for assessment of the shape and volume of amputees’ residual limb models. PLoS ONE 12, e0184498 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Baronio, G., Harran, S. & Signoroni, A. A critical analysis of a hand orthosis reverse engineering and 3D printing process. Appl. Bionics Biomech. 2016, 8347478 (2016).

    Google Scholar 

  120. Zhang, D. et al. Simulated and experimental estimates of hydrodynamic drag from bio-logging tags. Mar. Mamm. Sci. 36, 136–157 (2020).

    Article  Google Scholar 

  121. Chia, H. N. & Wu, B. M. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 9, 4 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wang, Y. et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Sci. Robot. 2, eaan8072 (2017).

    Article  PubMed  Google Scholar 

  123. Beckert, M., Flammang, B. E. & Nadler, J. H. Remora fish suction pad attachment is enhanced by spinule friction. J. Exp. Biol. 218, 3551–3558 (2015).

    PubMed  Google Scholar 

  124. Iverson, S. J. et al. The ocean tracking network: advancing frontiers in aquatic science and management. Can. J. Fish. Aquat. Sci. 76, 1041–1051 (2019).

    Article  Google Scholar 

  125. March, D., Boehme, L., Tintoré, J., Vélez-Belchi, P. J. & Godley, B. J. Towards the integration of animal-borne instruments into global ocean observing systems. Glob. Chang. Biol. 26, 586–596 (2020).

    Article  PubMed  Google Scholar 

  126. Awan, K. M. et al. Underwater wireless sensor networks: a review of recent issues and challenges. Wirel. Commun. Mob. Comput. 1, 6470359 (2019).

    Google Scholar 

  127. Johnson, K. S. et al. Special issue: the revolution in global ocean forecasting—GODAE: 10 years of achievement. Oceanography 22, 216–225 (2009).

  128. Ullo, S. L. & Sinha, G. R. Advances in smart environment monitoring systems using IoT and sensors. Sensors 20, 3113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Davidson, S. C. et al. Ecological insights from three decades of animal movement tracking across a changing Arctic. Science 370, 712–715 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Photopoulou, T., Fedak, M. A., Matthiopoulos, J., McConnell, B. & Lovell, P. The generalized data management and collection protocol for conductivity–temperature–depth satellite relay data loggers. Anim. Biotelemetry 3, 21 (2015).

    Google Scholar 

  131. Przybysz, A., Duarte, C. M., Geraldi, N. R., Kosel, J. & Berumen, M. L. Cellular network marine sensor buoy. In 2020 IEEE Sensors Applications Symposium, SAS 2020—Proceedings 1–6 (Institute of Electrical and Electronics Engineers, 2020).

  132. Gallagher, A. J. et al. Tiger sharks support the characterization of the world’s largest seagrass ecosystem. Nat. Commun. 13, 6328 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Bates, A. E., Primack, R. B., Moraga, P. & Duarte, C. M. COVID-19 pandemic and associated lockdown as a ‘Global Human Confinement Experiment’ to investigate biodiversity conservation. Biol. Conserv. 248, 108665 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Okoro, H. & Godwin Orifama, D. Robotization of operations in the petroleum industry. Int. J. Ind. Manuf. Syst. Eng. 4, 48–53 (2019).

    Google Scholar 

  137. Jackowska, K. & Krysinski, P. New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem. 405, 3753–3771 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the King Abdullah University of Science and Technology sensor initiative (OSR-2015 Sensors 2707).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altynay Kaidarova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Nigel Hussey and Nae-Eung Lee for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaidarova, A., Geraldi, N.R., Wilson, R.P. et al. Wearable sensors for monitoring marine environments and their inhabitants. Nat Biotechnol 41, 1208–1220 (2023). https://doi.org/10.1038/s41587-023-01827-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-023-01827-3

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene