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            Abstract
Sequencing-based approaches for the analysis of microbial communities are susceptible to contamination, which could mask biological signals or generate artifactual ones. Methods for in silico decontamination using controls are routinely used, but do not make optimal use of information shared across samples and cannot handle taxa that only partially originate in contamination or leakage of biological material into controls. Here we present Source tracking for Contamination Removal in microBiomes (SCRuB), a probabilistic in silico decontamination method that incorporates shared information across multiple samples and controls to precisely identify and remove contamination. We validate the accuracy of SCRuB in multiple data-driven simulations and experiments, including induced contamination, and demonstrate that it outperforms state-of-the-art methods by an average of 15–20 times. We showcase the robustness of SCRuB across multiple ecosystems, data types and sequencing depths. Demonstrating its applicability to microbiome research, SCRuB facilitates improved predictions of host phenotypes, most notably the prediction of treatment response in melanoma patients using decontaminated tumor microbiome data.
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                    Fig. 1: SCRuB demonstrates superior decontamination in simulated benchmarks.[image: ]


Fig. 2: SCRuB correctly accounts for well-to-well leakage.[image: ]


Fig. 3: SCRuB outperforms alternative decontamination methods in a benchmark with human-derived samples.[image: ]


Fig. 4: SCRuB improves the prediction of melanoma and treatment response.[image: ]
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                Data availability

              
              Sequencing data from our experiments, along with all relevant metadata, was uploaded to SRA, accession PRJNA905430 (ref. 55). All other datasets analyzed in this study are publicly available. The college dormitory dataset25 used in Fig. 1 and Extended Data Figs. 3–5 is available from the European Nucleotide Archive (ENA), accession ERP115809, and Qiita41, study ID 12470. The marine sediments dataset, used in Extended Data Fig. 3a,b, is available from Qiita41, study ID 11922. The fish microbiome dataset42, used in Extended Data Fig. 3c,d, is available from ENA, accession PRJEB54736, and Qiita41, study ID 13414. The Earth Microbiome Project soil dataset43, used in Extended Data Fig. 3e,f, is available from ENA, accession PRJEB42019, and Qiita41, study ID 13114. The office dataset44, used in Extended Data Fig. 3g,h, is available from ENA, accession PRJEB13115, and Qiita41, study ID 10423. The Central Park soil dataset45, used in Extended Data Fig. 3i,j, is available from ENA, accession PRJEB6614, and Qiita41, study ID 2104. The gut metagenomic dataset46, used in Extended Data Fig. 3k,l, is available from ENA, accession PRJEB50408, and Qiita41, study ID 13692. The negative controls dataset, used in Fig. 1, and Extended Data Figs. 3a–f, 4, 5 is available from Qiita41, study ID 12019; the one used in Extended Data Fig. 3g,h,k,l is available from ENA, accession PRJEB40903, and Qiita41, study ID 12201; and the one used in Extended Data Fig. 3i,j is available from ENA, accession PRJEB25617, and Qiita41, study ID 10333. The well-to-well leakage dataset32, is available from ENA, accession ERP115213. The plasma cfDNA data20 is available from ENA, accessions ERP119598, ERP119596 and ERP119597; and Qiita41, study IDs 12667, 12691 and 12692. The tumor microbiome dataset18 is available from SRA, accession PRJNA624822. The processed data was obtained from Supplementary Table 2 in ref. 18.

            

Code availability

              
              SCRuB is available at https://github.com/Shenhav-and-Korem-labs/SCRuB56 and requires R (≥3.6.3), glmnet57 (4.1-4) and torch (1.3.1). A Code Ocean capsule replicating all analyses in this paper is available at https://codeocean.com/capsule/5737862/tree/v1 (ref. 58), with source code also available at https://github.com/Shenhav-and-Korem-labs/SCRuB_analysis. Both use tidyverse59 (0.7.2) and XGBoost60 (1.5.0). The decontamination pipeline used by Nejman et al.18 is available from Zenodo at https://doi.org/10.5281/zenodo.3740536, and the prediction pipeline used by Poore et al.20 is available at https://github.com/biocore/tcga.
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Extended data

Extended Data Fig. 1 Empirical validation of the source-tracking assumption in data from Nejman et al.18.
The source-tracking assumption30,31,34 in the context of contamination stipulates that taxa present together in a contamination source will be introduced together to other samples, and in similar proportions as in the contamination source. We demonstrate this empirically using data from Nejamn et al.18. a, The average relative abundance of each ASV (y-axis) across samples from the Netherlands Cancer Institute, plotted against the abundance of the same ASV across negative controls from the same batch (x-axis; ‘No Template Controls’ in Nejman et al.18), separated to ‘high’ and ‘low’ contamination based on SCRuB’s prediction (contamination parameter p > 0.5 and p ≤ 0.5 respectively). Consistent with the source-tracking assumption, taxa present together in a contamination source are introduced together to the samples, and in similar proportions, resulting in a clear positive correlation between the relative abundance of the taxa that are shared between samples and controls (Pearson R = 0.99, P < 10−20 and R = 0.082, P = 0.037 for high and low contamination, respectively). As expected, this correlation varies with respect to SCRuB’s predicted contamination in the samples: samples predicted to have high-contamination (blue) have a slope of 0.97, while those predicted to have low-contamination have a slope of 0.057. b,c, Same as (a) for samples predicted to have the highest (b) and lowest (c) contamination. Pearson R is displayed for panels with >3 shared taxa. Correlation was very high for highly contaminated samples (Pearson R > 0.9, P < 10−4 for all).


Extended Data Fig. 2 Description of our simulation framework.
A visualization of the simulation framework used to benchmark different decontamination methods. We implemented our simulation with the 3 outlined steps: a, We generate a dataset with 88–94 samples, 2, 4 or 8 controls, and a contamination source from an unrelated study, assumed to be biologically distinct from the samples of interest. All samples are then assigned locations across the plate. b, We add well-to-well leakage to the controls, and contamination from the shared source to the samples of interest (Methods). c, We run decontamination using one of several methods (Methods). The decontaminated dataset is evaluated against the ground truth noncontaminated taxonomic compositions using the Jensen-Shannon divergence.


Extended Data Fig. 3 SCRuB outperforms alternative decontamination methods under in silico simulations of diverse environments and data types.
a-l, Same as Fig. 1c, d, but for simulations based on data from 16S amplicon sequencing of tropical marine sediments (Qiita41 study ID 11922; a,b); 16S amplicon sequencing of multiple body sites from southern California fish42 (c,d); 16S amplicon sequencing of soil from the Earth Microbiome Project43 (e,f); ITS sequencing of office samples44 (g,h); 18S amplicon sequencing of soil from Central Park, New York45 (i,j); and human gut metagenomic sequencing46 (k,l). N = 120 simulations per panel. Across almost all simulation scenarios and environments SCRuB outperforms alternative decontamination approaches. Contamination levels were fixed to 5% for the simulations in panels b, d, f, h, j, and l. Box line, median; box, IQR; whiskers, 1.5*IQR; *, one-sided Wilcoxon signed-rank P < 10−4 for comparison between SCRuB and marked method (see Supplementary Table 1 for exact P values).


Extended Data Fig. 4 SCRuB is robust to evaluation metrics and simulation parameters.
a-d, Same as Fig. 1c, d, box and swarm plot (line, median; box, IQR; whiskers, 1.5*IQR) showing the mean (a,b) and standard deviation (c,d) of the Jensen-Shannon divergence (JSD) between the ground truth of each experiment and its decontamination output. SCRuB performs similarly when evaluated using mean JSD, and displays stable standard deviation. e,f, Same as Fig. 1c, d, but with controls placed along the edge of a plate rather than randomly. Similar to Fig. 1c, d, SCRuB outperforms alternative methods under all parameters except no decontamination and microDecon with 50% well-to-well leakage levels. g, Shown are the results from Fig. 1d with well-to-well leakage levels of 5%, stratified by the number of controls (N = 10 experiments per set). SCRuB outperforms alternative decontamination methods regardless of the number of controls (one-sided Wilcoxon signed-rank P < 10−3 for all, P = 0.0029 vs. microDecon with one control). h, Same as Fig. 1d, showing also results from SCRuB running without sample location, and thus without accounting for well-to-well leakage. While SCRuB outperforms SCRuB without sample locations in all simulations (P < 10−4 for all), SCRuB without sample locations still outperforms alternative decontamination methods in many settings. *, one-sided Wilcoxon signed-rank P < 10−3 (panel g) P < 10−4 (otherwise) for comparison between SCRuB (panels a-g) and SCRuB without sample locations (panel h) and the marked method (see Supplementary Table 1 for exact P values). * is on the bottom if the marked method has better performance.


Extended Data Fig. 5 SCRuB is robust to sequencing depth.
Shown are results from in silico simulations under our model (Methods). a, Comparison between experiments in which the read counts of all samples were set to either 1,000, 5,000, 10,000, or 25,000 reads, under contamination and well-to-well leakage levels of 5%. With the exception of the depth of 1,000 reads, SCRuB outperformed the alternative methods in all simulations (one-sided Wilcoxon signed-rank P < 10−3 for all). At a depth of 1,000 reads, SCRuB had comparable performance to decontam (P = 0.19), and significantly outperformed the rest (P < 0.01 for all). b, For each experiment, the mean read depth was set to 10,000, the standard deviation to 2,500, and the contamination and well-to-well leakage levels to 5%. We divided the samples from each experiment into four groups, Q1-Q4, based on the within-experiment quantile to which the read depth of each sample belonged to. Within all groups, SCRuB outperformed alternative decontamination methods (P < 10−3 for all), demonstrating that SCRuB has consistent performance within an experiment with varying read depths. c, Results from experiments with a mean read depth of 10,000, standard deviation of 0, 500, 2,500 or 7,500, and contamination and well-to-well leakage levels of to 5%. Across all standard deviations, SCRuB outperformed competing methods, demonstrating that it is robust to variability in read coverage across experiments. Box line, median; box, IQR; box whiskers, 1.5*IQR; *, one-sided Wilcoxon signed-rank P < 0.01 for comparison between SCRuB and marked method (see Supplementary Table 1 for exact P values).


Extended Data Fig. 6 SCRuB correctly handles unrelated controls.
a, Venn diagram illustrating the taxa removed by each decontamination method, defined as a taxa with an aggregate sum greater than zero in the observed data, and an aggregate sum of zero in the decontaminated data. When presented with unrelated controls, SCRuB removed far fewer taxa than microDecon and either version of decontam, and the majority of taxa removed by SCRuB were also removed by microDecon and decontam (LB). b, Box and swarm plots (line, median; box, IQR; whiskers, 1.5*IQR) showing the median Jensen-Shannon divergence per simulation between simulated samples before and after decontamination with an unrelated control (Methods), across 50 simulated datasets of 88 samples and 8 negative controls. SCRuB is robust to non-informative controls, producing taxonomic compositions that are very close to the original, and significantly closer than alternative methods (one-sided Wilcoxon signed-rank P = 4×10−10, P = 8.8×10−10 and P = 3.8×10−10 between SCRuB and microDecon, decontam or decontam (LB), respectively).


Extended Data Fig. 7 SCRuB correctly accounts for well-to-well leakage.
a, Similar to Fig. 2f, showing the Jensen-Shannon divergence (y-axis) between the ground truth taxonomic composition, as defined by the experimental design of Minich et al.31 (Methods), and the taxonomic composition of the unprocessed dataset (‘No decontamination’), or the dataset following decontamination by various methods (x-axis), and displayed separately for the 31 distinct low-prevalence (left) and 90 high-prevalence (right) monocultures. For low prevalence samples, SCRuB produced estimates that were significantly more similar to the ground truth compared to microDecon, decontam, decontam (LB), and to a restrictive approach (one-sided Wilcoxon P < 10−4 in all cases). For the high prevalence samples, SCRuB performed comparably to decontam and microDecon (P = 0.93, P = 0.12, respectively) and outperformed no decontamination, restrictive, and decontam (LB) (P = 10−8, P = 8.7×10−17 and P = 1.3×10−4, respectively). b-f, A simulation of a more complicated well-to-well leakage experiment, in which each taxa was placed in two monocultures instead of one. To simulate such a scenario, we randomly chose pairs of taxa, and then reassigned all reads assigned to one taxa across the experiment to the other, ‘focal’, taxa. For example, Minich et al. placed E. coli in well C10 (c), resulting in well-to-well leakage (d). We randomly selected well C3, containing a Corynbacterium species, and reassigned all Corynbacterium reads to E. coli (e). We then ran SCRuB on this simulated data, and evaluated the relative abundance of E. coli in its original well (b, f). We performed this 100 times, and examined the relative abundance of the focal taxa in its original well (b). In all cases, SCRuB accurately handled well-to-well leakage in this more complex scenario and avoided removing the taxa belonging to the focal monoculture.


Extended Data Fig. 8 SCRuB correctly infers well-to-well leakage into negative controls in a metagenomic study of infant and maternal microbiomes.
a, The plate design used by Lou et al.33,39, which included a negative control placed in the corner of each extraction plate. Through a strain-level analysis, Lou et al. identified well-to-well leakage into certain negative controls. b, When running SCRuB on each plate, using the MAG abundances of each sample (Methods), we identified well-to-well leakage into the negative control in two of the four plates that included a negative control. c, SCRuB’s predictions of well-to-well leakage were consistent with an assessment based on the results of Lou et al.’s strain-level analysis (Methods).


Extended Data Fig. 9 Well-to-well leakage is more prominent during DNA extraction.
a,b, Plate layout during DNA extraction (a) and library preparation (b) of experiment 2 (Fig. 3a). 10 controls were included in the DNA extraction stage (triangles), and additional 7 in the library preparation stage (hexagon); a pair of each was away from other samples (‘far samples’, purple). c, Box and swarm plot (line, median; box, IQR; whiskers, 1.5*IQR) showing the Jensen-Shannon divergence (y-axis) between human-derived samples adjacent to DNA extraction and library preparation controls and the various controls of each processing stage, stratified by adjacent and near controls (purple in a,b), and calculated from ‘raw’ taxonomic compositions, without any decontamination. Samples are more similar to near than far controls, demonstrating well-to-well leakage occurring during both DNA extraction and library preparation. Samples are also more similar to near extraction controls than to near library controls, suggesting that well-to-well leakage is more prominent during DNA extraction. P, two-sided Mann-Whitney U; N, number of pairwise distances between relevant samples.


Extended Data Fig. 10 SCRuB improves prediction of melanoma and treatment response.
a-f, Receiver operating characteristic (ROC) curves evaluating the pairwise classification accuracy of gradient boosted decision trees on data from patients with lung cancer, prostate cancer, melanoma, and controls, using data from Poore et al.20 Compared to alternative decontamination methods, SCRuB offers classification accuracy that is on-par or improved, and improved accuracy compared to the original analyses in all cases. See Supplementary Table 1 for P values comparing between methods. Shaded area, 95% confidence interval. g, A Venn diagram enumerating the number of taxa completely removed by each decontamination methods applied to the tumor microbiome data from Nejman et al.18 SCRuB removed fewer taxa than alternative methods.





Supplementary information
Supplementary Information
Supplementary Note.


Reporting Summary

Supplementary Tables
Supplementary Table 1: Exact P values displayed in figures. Supplementary Table 2: Experimental metadata and plate layouts of experiments performed. Refers to experiments described in Fig. 3. Supplementary Table 3: V1–V2 reads in control samples. The number of reads from the V1–V2 regions found in each of the samples from the experiments with human-derived samples (Fig. 3a; Methods). Samples with NA had no reads following DADA2 processing.





Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions


About this article
[image: Check for updates. Verify currency and authenticity via CrossMark]       



Cite this article
Austin, G.I., Park, H., Meydan, Y. et al. Contamination source modeling with SCRuB improves cancer phenotype prediction from microbiome data.
                    Nat Biotechnol 41, 1820–1828 (2023). https://doi.org/10.1038/s41587-023-01696-w
Download citation
	Received: 17 May 2022

	Accepted: 23 January 2023

	Published: 16 March 2023

	Issue Date: December 2023

	DOI: https://doi.org/10.1038/s41587-023-01696-w


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        








            


            

            
        





    
        

        
            
                

    
        
            
                
                Access through your institution
            
        

        
            
                
                    Buy or subscribe
                
            

        
    



            

            
                

    
        
        

        
        
            
                
                Access through your institution
            
        

        
            
                Change institution
            
        

        
        
            
                Buy or subscribe
            
        

        
    



            

        
    


    
        
    

    
    

    
        
            
                
                    
                        
                            Advertisement

                            
    
        
            
                [image: Advertisement]
        

    


                        

                    

                

            

            

            

        

    






    
        
            
                Explore content

                	
                                
                                    Research articles
                                
                            
	
                                
                                    Reviews & Analysis
                                
                            
	
                                
                                    News & Comment
                                
                            
	
                                
                                    Podcasts
                                
                            
	
                                
                                    Videos
                                
                            
	
                                
                                    Current issue
                                
                            
	
                                
                                    Collections
                                
                            


                	
                            Follow us on Facebook
                            
                        
	
                            Follow us on Twitter
                            
                        
	
                            
                                Subscribe
                            
                        
	
                            Sign up for alerts
                            
                        
	
                            
                                RSS feed
                            
                        


            

        
    
    
        
            
                
                    About the journal

                    	
                                
                                    Aims & Scope
                                
                            
	
                                
                                    Journal Information
                                
                            
	
                                
                                    Journal Metrics
                                
                            
	
                                
                                    About the Editors
                                
                            
	
                                
                                    Our publishing models
                                
                            
	
                                
                                    Editorial Values Statement
                                
                            
	
                                
                                    Editorial Policies
                                
                            
	
                                
                                    Content Types
                                
                            
	
                                
                                    Web Feeds
                                
                            
	
                                
                                    Posters
                                
                            
	
                                
                                    Contact
                                
                            
	
                                
                                    Research Cross-Journal Editorial Team
                                
                            
	
                                
                                    Reviews Cross-Journal Editorial Team
                                
                            


                

            
        

        
            
                
                    Publish with us

                    	
                                
                                    Submission Guidelines
                                
                            
	
                                
                                    For Reviewers
                                
                            
	
                                
                                    Language editing services
                                
                            
	
                                Submit manuscript
                                
                            


                

            
        
    



    
        Search

        
            Search articles by subject, keyword or author
            
                
                    
                

                
                    
                        Show results from
                        All journals
This journal


                    

                    
                        Search
                    

                


            

        


        
            
                Advanced search
            
        


        Quick links

        	Explore articles by subject
	Find a job
	Guide to authors
	Editorial policies


    





        
    
        
            

            
                
                    Nature Biotechnology (Nat Biotechnol)
                
                
    
    
        ISSN 1546-1696 (online)
    
    


                
    
    
        ISSN 1087-0156 (print)
    
    

            

        

    




    
        
    nature.com sitemap

    
        
            
                About Nature Portfolio

                	About us
	Press releases
	Press office
	Contact us


            


            
                Discover content

                	Journals A-Z
	Articles by subject
	Protocol Exchange
	Nature Index


            


            
                Publishing policies

                	Nature portfolio policies
	Open access


            


            
                Author & Researcher services

                	Reprints & permissions
	Research data
	Language editing
	Scientific editing
	Nature Masterclasses
	Research Solutions


            


            
                Libraries & institutions

                	Librarian service & tools
	Librarian portal
	Open research
	Recommend to library


            


            
                Advertising & partnerships

                	Advertising
	Partnerships & Services
	Media kits
                    
	Branded
                        content


            


            
                Professional development

                	Nature Careers
	Nature 
                        Conferences


            


            
                Regional websites

                	Nature Africa
	Nature China
	Nature India
	Nature Italy
	Nature Japan
	Nature Korea
	Nature Middle East


            


        

    

    
        	Privacy
                Policy
	Use
                of cookies
	
                Your privacy choices/Manage cookies
                
            
	Legal
                notice
	Accessibility
                statement
	Terms & Conditions
	Your US state privacy rights


    





        
    
        [image: Springer Nature]
    
    © 2024 Springer Nature Limited




    

    
    
    







    

    



    
    

        

    
        
            


Close
    



        

            
                
                    [image: Nature Briefing]
                    Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

                

                
                    
                        
                        

                        
                        
                        
                        

                        Email address

                        
                            
                            
                            
                            Sign up
                        


                        
                            
                            I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.
                        

                    

                

            


        


    

    
    

        

    
        
            

Close
    



        
            Get the most important science stories of the day, free in your inbox.
            Sign up for Nature Briefing
            
        


    









    [image: ]







[image: ]
