Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence of the fractional quantum spin Hall effect in moiré MoTe2

Abstract

Quantum spin Hall (QSH) insulators are two-dimensional electronic materials that have a bulk band gap similar to an ordinary insulator but have topologically protected pairs of edge modes of opposite chiralities1,2,3,4,5,6. So far, experimental studies have found only integer QSH insulators with counter-propagating up-spins and down-spins at each edge leading to a quantized conductance G0 = e2/h (with e and h denoting the electron charge and Planck’s constant, respectively)7,8,9,10,11,12,13,14. Here we report transport evidence of a fractional QSH insulator in 2.1° twisted bilayer MoTe2, which supports spin-Sz conservation and flat spin-contrasting Chern bands15,16. At filling factor ν = 3 of the moiré valence bands, each edge contributes a conductance \(\frac{3}{2}{G}_{0}\) with zero anomalous Hall conductivity. The state is probably a time-reversal pair of the even-denominator 3/2-fractional Chern insulators. Furthermore, at ν= 2, 4 and 6, we observe a single, double and triple QSH insulator with each edge contributing a conductance G0, 2G0 and 3G0, respectively. Our results open up the possibility of realizing time-reversal symmetric non-abelian anyons and other unexpected topological phases in highly tunable moiré materials17,18,19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Moiré MoTe2 device and characterization.
Fig. 2: Quantized two-terminal transport.
Fig. 3: Two-terminal nonlocal transport.
Fig. 4: Topological phase transition and thermal excitations.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data are available from the corresponding authors upon reasonable request.

References

  1. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Bernevig, B. A. & Zhang, S.-C. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

    Article  PubMed  ADS  Google Scholar 

  5. Sheng, D. N., Weng, Z. Y., Sheng, L. & Haldane, F. D. M. Quantum spin-Hall effect and topologically invariant Chern numbers. Phys. Rev. Lett. 97, 036808 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  ADS  Google Scholar 

  7. Konig, M. et al. Quantum spin hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  PubMed  ADS  Google Scholar 

  8. Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Knez, I., Du, R. R. & Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 107, 136603 (2011).

    Article  PubMed  ADS  Google Scholar 

  10. Young, A. F. et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature 505, 528–532 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    Article  CAS  Google Scholar 

  12. Wu, S. F. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  13. Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Zhao, W. et al. Realization of the Haldane Chern insulator in a moiré lattice. Nat. Phys. 20, 275–280 (2024).

  15. Wu, F. C., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Devakul, T., Crepel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article  CAS  ADS  Google Scholar 

  18. Kennes, D. M. et al. Moire heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  19. Mak, K. F. & Shan, J. Semiconductor moire materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Xiao, D., Liu, G. B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  PubMed  ADS  Google Scholar 

  23. Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moire MoTe2. Nature 622, 69–73 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Xu, F. et al. Observation of Integer and Fractional Quantum Anomalous Hall Effects in Twisted Bilayer MoTe2. Phys. Rev. 13, 031037 (2023).

    Article  CAS  Google Scholar 

  27. Reddy, A. P., Alsallom, F. F., Zhang, Y., Devakul, T. & Fu, L. Fractional quantum anomalous Hall states in twisted bilayer MoTe2 and WSe2. Phys. Rev. B 108, 085117 (2023).

  28. Wang, C. et al. Fractional Chern insulator in twisted bilayer MoTe2. Phys. Rev. Lett. 132, 036501 (2024).

  29. Morales-Durán, N., Wei, N., Shi, J. & MacDonald, A. H. Magic angles and fractional Chern insulators in twisted homobilayer TMDs. Preprint at arxiv.org/abs/2308.03143 (2023).

  30. Mao, N. et al. Lattice relaxation, electronic structure and continuum model for twisted bilayer MoTe2. Preprint at arxiv.org/abs/2311.07533 (2023).

  31. Crépel, V., Regnault, N. & Queiroz, R. The chiral limits of moiré semiconductors: origin of flat bands and topology in twisted transition metal dichalcogenides homobilayers. Preprint at https://arxiv.org/abs/2305.10477 (2023).

  32. Jia, Y. et al. Moiré fractional Chern insulators I: first-principles calculations and continuum models of twisted bilayer MoTe2. Preprint at arxiv.org/abs/2311.04958 (2023).

  33. Li, B., Qiu, X-W, Wu, F. Electrically tuned topology and magnetism in twisted bilayer MoTe2 at νh = 1. Phys. Rev. B 109, L041106 (2024).

  34. Mai, P., Feldman, B. E. & Phillips, P. W. Topological Mott insulator at quarter filling in the interacting Haldane model. Phys. Rev. Res. 5, 013162 (2023).

    Article  CAS  Google Scholar 

  35. Morales-Durán, N. et al. Pressure-enhanced fractional Chern insulators along a magic line in moiré transition metal dichalcogenides. Phys. Rev. Research 5, L032022 (2023).

  36. Bai, Y. X. et al. Doubled quantum spin Hall effect with high-spin Chern number in α-antimonene and α-bismuthene. Phys. Rev. B 105, 195142 (2022).

    Article  CAS  ADS  Google Scholar 

  37. Levin, M. & Stern, A. Fractional topological insulators. Phys. Rev. Lett. 103, 196803 (2009).

    Article  PubMed  ADS  Google Scholar 

  38. Maciejko, J. & Fiete, G. A. Fractionalized topological insulators. Nat. Phys. 11, 385–388 (2015).

    Article  Google Scholar 

  39. Neupert, T., Chamon, C., Iadecola, T., Santos, L. H. & Mudry, C. Fractional (Chern and topological) insulators. Phys. Scr. 2015, 014005 (2015).

    Article  Google Scholar 

  40. Stern, A. Fractional topological insulators: a pedagogical review. Annu. Rev. Condens. Matter Phys. 7, 349–368 (2016).

    Article  CAS  ADS  Google Scholar 

  41. Wu, Y.-M., Shaffer, D., Wu, Z. & Santos, L. H. Time-reversal invariant topological moiré flatband: a platform for the fractional quantum spin Hall effect. Preprint at https://arxiv.org/abs/2309.07222 (2023).

  42. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  43. Stormer, H. L., Tsui, D. C. & Gossard, A. C. The fractional quantum Hall effect. Rev. Mod. Phys. 71, S298–S305 (1999).

    Article  MathSciNet  CAS  Google Scholar 

  44. Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

  47. Xu, Y. et al. A tunable bilayer Hubbard model in twisted WSe2. Nat. Nanotechnol. 17, 934–939 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Xia, Z. et al. Optical readout of the chemical potential of two-dimensional electrons. Nat. Photon. 10.1038/s41566-024-01377-3 (2024).

  52. Büttiker, M. Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B 38, 9375–9389 (1988).

    Article  ADS  Google Scholar 

  53. Pack, J. et al. Charge-transfer contact to a high-mobility monolayer semiconductor. Preprint at arxiv.org/abs/2310.19782 (2023).

  54. Abanin, D. A. et al. Giant nonlocality near the Dirac point in graphene. Science 332, 328–330 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Jian, A. H. MacDonald, C. Kane, L. Fu, A. Bernevig, N. Regnault, J. Yu, T. Devakul, A. Reddy and E.-A. Kim for their discussions. This work was primarily supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-SC0019481. It was also funded in part by the Air Force Office of Scientific Research under award no. FA9550-20-1-0219, the Cornell University Materials Research Science and Engineering Center DMR-1719875 and the Gordon and Betty Moore Foundation (grant no. GBMF11563; https://doi.org/10.37807/GBMF11563) for device fabrication and thermodynamic measurements. We used the Cornell NanoScale Facility, an NNCI member supported by NSF Grant NNCI-2025233, for sample fabrication. The growth of the hBN crystals was supported by the Elemental Strategy Initiative of MEXT, Japan, and CREST (JPMJCR15F3), JST. K.F.M. acknowledges support from the David and Lucille Packard Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.K., B.S. and Y.Q. fabricated the devices, performed the transport measurements and analysed the data. Y.Z. and Z.X. performed the thermodynamic measurements. K.W. and T.T. grew the bulk hBN crystals. K.K., K.F.M. and J.S. designed the scientific objectives and oversaw the project. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Kaifei Kang, Jie Shan or Kin Fai Mak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Masataka Mogi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Contact resistance characterization.

a, Top: schematic of the device contact and channel. The Pt electrodes (grey) are contacted to the tMoTe2 channel (blue) through heavily hole-doped tMoTe2 contact regions (orange). Middle: schematic valence band alignment of the tMoTe2 contact and channel regions (solid red lines). Dashed line: Fermi level; solid black line: spatial variation of the work function. Tunnel barriers are at the Pt junctions, but the heavily-to-lightly doped tMoTe2 junctions are transparent. Bottom: equivalent circuit model for two-terminal measurements with Rchannel and Rcontact denoting the channel resistance and the contact resistance at the Pt junction, respectively. b, Filling factor dependence of two-terminal resistance R2t at different contact gate voltages (E≈0, T=20 mK and B=0.1 T). Inset: measurement configuration. R2t at the highest fillings is approximately the sum of resistances in series for two contacts. c, Filling factor dependence of four-terminal resistance Rsym measured with the configuration in the left inset. The resistance drops to about 100 Ω at ν = 11, which is nearly temperature independent (right inset). d, Temperature dependence of contact resistance (for one contact) calibrated for the two-terminal configuration in the inset.

Extended Data Fig. 2 Twist angle calibration.

a,b, Four-terminal resistance Rsym (a) and Hall resistance Rxy (b) versus out-of-plane magnetic field B and filling factor ν at E = 0.06 V/nm and 20 mK. The measurement configuration is shown in the inset of Fig. 1d. Dashed lines denote Landau level νLL = 1, 2 and 3 emerging from ν = 2 above B ≈ 7-8 T. The dispersing state at low filling factors is the ν = 1 Chern insulator. c, Line cut of a,b at B = 11 T. The vertical dashed lines mark Landau level νLL = 1, 2 and 3 with nearly quantized Rxy and Rsym minimum; the horizontal dashed lines denote the expected quantized value of \({R}_{{xy}}=\frac{h}{{\nu }_{{LL}}{e}^{2}}\). d, Twist angle calibrated from Landau level spacing at B ranging from 9 T to 11 T. No field dependence is observed. The mean of the twist angle is 2.10 degrees (dashed line) and the uncertainty is about ±0.05 degrees.

Extended Data Fig. 3 Symmetric device channel.

a,b, Filling factor dependence of four-terminal nonlocal resistance RNL (a, B=0.1 T) and Hall resistance Rxy (b, B=0.2 T) at E≈0 and T = 20 mK. The inset shows the device channel with contact 1–4. I: current bias; V: voltage probe. The two curves in each panel correspond to swapped source-drain and voltage probe pairs. The nearly identical results demonstrate a highly symmetric two-dimensional channel.

Extended Data Fig. 4 Additional nonlocal two-terminal transport data.

a-d, Filling factor dependence of two-terminal conductance G2t (in units of \(\frac{{e}^{2}}{h}\)) at two electric fields inside the layer-hybridized regime. Inset: measurement configuration. The dashed lines denote the expected quantized values of G2t at ν = 2, 3, 4 and 6. e,f, Electric-field dependence of G2t (in units of \(\frac{{e}^{2}}{h}\)) at ν = 1 (e) and ν = 6 (f) at 20 mK. The horizontal dashed lines denote the expected conductance \(\nu \), \(\frac{3}{4}\nu \), \(\frac{2}{3}\nu \) and \(\frac{1}{2}\nu \) in descending order. The colour of the lines matches the colour of the channels in ad. Magnetic field 0.3 T is applied to fully polarize the ν = 1 Chern insulator.

Extended Data Fig. 5 Additional temperature dependence data.

ac, Electric-field dependence of two-terminal conductance, G2t (in units of \(\frac{{e}^{2}}{h}\)), at varying temperatures for ν = 1 (a), ν = 2 (b) and ν = 4 (c). The horizontal dashed lines denote the quantized value \({G}_{2t}=\frac{\nu {e}^{2}}{h}\). The measurement configuration is shown in the inset of a. d, Filling factor dependence of four-terminal nonlocal resistance RNL at E ≈ 0 and varying temperatures. RNL at ν = 2, 3, 4 and 6 decreases with increasing temperature as bulk conduction becomes more important.

Extended Data Fig. 6 Twist angle effects.

a,b, Four-terminal Hall resistance Rxy (a) and Rsym (b) versus out-of-plane electric field and filling factor for 2.1-degree tMoTe2 device at B = 5 T and 20 mK. The measurement configuration is shown in the inset of a. Both Rsym and Rxy are small near ν = 3 in the layer-hybridized regime even under high magnetic fields. c,d, Same as a,b for 3.5-degree tMoTe2 device at B = 4 T and 1.6 K. A large negative Rxy is accompanied by a weak Rsym dip near ν = 3 in the layer-hybridized regime (even though at higher temperature and lower magnetic field). The large Hall response suggests a valley-polarized state (rather than a fractional QSH insulator) at ν = 3.

Extended Data Fig. 7 Anisotropic magneto-response.

a,b, Filling factor dependence of two-terminal resistance R2t at varying in-plane (a) and out-of-plane (b) magnetic fields (E = 0.06 V/nm and T = 20 mK). Whereas R2t is nearly independent of B, it increases with B. The horizontal dashed lines denote the quantized value \({R}_{2t}=\frac{h}{\nu {e}^{2}}\) at ν = 2, 3, 4 and 6. c, In-plane magnetic field dependence of \(\frac{{R}_{{NL}}({B}_{\parallel }=0T)}{{R}_{{NL}}({B}_{\parallel })}\) at varying temperatures for ν = 2, 3, 4 and 6, where RNL is the nonlocal four-terminal resistance. At all filling factors the cusp at zero magnetic field is broadened as temperature increases. The anisotropic magneto-response supports that the helical edge states carry Ising spins. Because of spin-Sz conservation, the edge states are immune to B, but are susceptible to gap opening and spin mixing under B, thus increasing R2t and RNL. The anisotropic magneto-response also contrasts with the expected bulk-dominant transport, which would show exactly the opposite magnetic field dependence, namely, strong out-of-plane but negligible in-plane magnetic field dependence.

Extended Data Fig. 8 Incompressibility measurements on 2.2- and 2.7-degree tMoTe2.

a,b, Electronic incompressibility for 2.2-degree (a) and 2.7-degree (b) tMoTe2 versus vertical electric field E and filling factor ν at 1.6 K (B = 0 T). In addition to the incompressible states at ν = 1, 2 and 4, a weak incompressible state is observed at ν = 3 in the small electric field, layer-hybridized region. c,d, The corresponding filling factor dependence of the electronic incompressibility at E = 0 V/nm (along the dashed lines in a and b). The grey-shaded area provides an estimate of the charge gap size at ν = 3 (about 0.12 meV and 0.8 meV for 2.2- and 2.7-degree sample, respectively). Note that the true gap size is higher because of the relatively higher base temperature (1.6 K) for the compressibility measurements.

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, K., Shen, B., Qiu, Y. et al. Evidence of the fractional quantum spin Hall effect in moiré MoTe2. Nature 628, 522–526 (2024). https://doi.org/10.1038/s41586-024-07214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07214-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing