Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual quantum spin Hall insulator by density-tuned correlations in TaIrTe4

Abstract

The convergence of topology and correlations represents a highly coveted realm in the pursuit of new quantum states of matter1. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order2,3,4,5,6,7,8, not possible in quantum Hall and Chern insulator systems. Here we report a new dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator, manifesting enhanced nonlocal transport and quantized helical edge conductance. After introducing electrons from charge neutrality, TaIrTe4 shows metallic behaviour in only a small range of charge densities but quickly goes into a new insulating state, entirely unexpected on the basis of the single-particle band structure of TaIrTe4. This insulating state could arise from a strong electronic instability near the van Hove singularities, probably leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state. The observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands through CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism2,3,4,9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electronic band structure, lattice structure and basic electrical characterization of monolayer TaIrTe4.
Fig. 2: QSH edge conduction at the CNP in monolayer TaIrTe4.
Fig. 3: Emergent insulating state at finite doping.
Fig. 4: The dual QSH effect in monolayer TaIrTe4.
Fig. 5: Theoretical investigation of the dual QSH state in monolayer TaIrTe4.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding authors on request. Source data are provided with this paper.

References

  1. Tokura, Y. Quantum materials at the crossroads of strong correlation and topology. Nat. Mater. 21, 971–973 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Levin, M. & Stern, A. Fractional topological insulators. Phys. Rev. Lett. 103, 196803 (2009).

    Article  PubMed  ADS  Google Scholar 

  3. Maciejko, J., Qi, X.-L., Karch, A. & Zhang, S.-C. Fractional topological insulators in three dimensions. Phys. Rev. Lett. 105, 246809 (2010).

    Article  PubMed  ADS  Google Scholar 

  4. Santos, L., Neupert, T., Ryu, S., Chamon, C. & Mudry, C. Time-reversal symmetric hierarchy of fractional incompressible liquids. Phys. Rev. B 84, 165138 (2011).

    Article  ADS  Google Scholar 

  5. Goerbig, M. From fractional Chern insulators to a fractional quantum spin hall effect. Eur. Phys. J. B 85, 15 (2012).

    Article  ADS  Google Scholar 

  6. Li, W., Sheng, D., Ting, C. & Chen, Y. Fractional quantum spin Hall effect in flat-band checkerboard lattice model. Phys. Rev. B 90, 081102 (2014).

    Article  ADS  Google Scholar 

  7. Wang, C. & Senthil, T. Time-reversal symmetric u(1) quantum spin liquids. Phys. Rev. X 6, 011034 (2016).

    Google Scholar 

  8. Barkeshli, M., Bonderson, P., Cheng, M. & Wang, Z. Symmetry fractionalization, defects, and gauging of topological phases. Phys. Rev. B 100, 115147 (2019).

    Article  CAS  ADS  Google Scholar 

  9. Park, K.-S. & Han, H. Dirac quantization and fractional magnetoelectric effect in interacting topological insulators. Phys. Rev. B 82, 153101 (2010).

    Article  ADS  Google Scholar 

  10. Wang, H.-W., Fu, B., Zou, J.-Y., Hu, Z.-A. & Shen, S.-Q. Fractional electromagnetic response in a three-dimensional chiral anomalous semimetal. Phys. Rev. B 106, 045111 (2022).

    Article  CAS  ADS  Google Scholar 

  11. Sheng, D., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

    Article  PubMed  ADS  Google Scholar 

  13. Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    Article  PubMed  ADS  Google Scholar 

  14. Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).

    Google Scholar 

  15. Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).

    CAS  Google Scholar 

  20. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  PubMed  ADS  Google Scholar 

  22. Yang, F. et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys. Rev. Lett. 109, 016801 (2012).

    Article  PubMed  ADS  Google Scholar 

  23. Xu, Y. et al. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 111, 136804 (2013).

    Article  PubMed  ADS  Google Scholar 

  24. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Du, L., Knez, I., Sullivan, G. & Du, R.-R. Robust helical edge transport in gated InAs/GaSb bilayers. Phys. Rev. Lett. 114, 096802 (2015).

    Article  PubMed  ADS  Google Scholar 

  26. Zhu, F.-F. et al. Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Li, X.-B. et al. Experimental observation of topological edge states at the surface step edge of the topological insulator ZrTe5. Phys. Rev. Lett. 116, 176803 (2016).

    Article  PubMed  ADS  Google Scholar 

  28. Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    Article  CAS  Google Scholar 

  29. Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017).

    Article  CAS  Google Scholar 

  30. Shumiya, N. et al. Evidence of a room-temperature quantum spin Hall edge state in a higher-order topological insulator. Nat. Mater. 21, 1111–1115 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Wang, R., Sedrakyan, T. A., Wang, B., Du, L. & Du, R.-R. Excitonic topological order in imbalanced electron-hole bilayers. Nature 619, 57–62 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  33. Zhao, W. et al. Realization of the Haldane Chern insulator in a moiré lattice. Nat. Phys. 20, 275–280 (2024).

  34. Wu, S., Zhang, Z., Watanabe, K., Taniguchi, T. & Andrei, E. Y. Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nat. Mater. 20, 488–494 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in bernal bilayer graphene. Science 375, 774–778 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Yin, J.-X., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Teng, X. et al. Discovery of charge density wave in a kagome lattice antiferromagnet. Nature 609, 490–495 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Belopolski, I. et al. Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points. Nat. Commun. 8, 942 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  40. Cai, S. et al. Observation of superconductivity in the pressurized Weyl-semimetal candidate TaIrTe4. Phys. Rev. B 99, 020503 (2019).

    Article  CAS  ADS  Google Scholar 

  41. Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Liu, J., Wang, H., Fang, C., Fu, L. & Qian, X. van der Waals stacking-induced topological phase transition in layered ternary transition metal chalcogenides. Nano Lett. 17, 467–475 (2017).

    Article  PubMed  ADS  Google Scholar 

  43. Guo, P.-J., Lu, X.-Q., Ji, W., Liu, K. & Lu, Z.-Y. Quantum spin Hall effect in monolayer and bilayer TaIrTe4. Phys. Rev. B 102, 041109 (2020).

    Article  CAS  ADS  Google Scholar 

  44. Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Xu, C. & Moore, J. E. Stability of the quantum spin Hall effect: effects of interactions, disorder, and \({{\mathcal{Z}}}_{2}\) topology. Phys. Rev. B 73, 045322 (2006).

    Article  ADS  Google Scholar 

  46. Maciejko, J. et al. Kondo effect in the helical edge liquid of the quantum spin Hall state. Phys. Rev. Lett. 102, 256803 (2009).

    Article  PubMed  ADS  Google Scholar 

  47. Zhang, S.-B., Zhang, Y.-Y. & Shen, S.-Q. Robustness of quantum spin Hall effect in an external magnetic field. Phys. Rev. B 90, 115305 (2014).

    Article  ADS  Google Scholar 

  48. Ma, E. Y. et al. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry. Nat. Commun. 6, 7252 (2015).

    Article  PubMed  ADS  Google Scholar 

  49. Li, C. et al. Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3. Nat. Nanotechnol. 9, 218–224 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Liu, Y. et al. Raman signatures of broken inversion symmetry and in-plane anisotropy in type-II Weyl semimetal candidate TaIrTe4. Adv. Mater. 30, 1706402 (2018).

    Article  ADS  Google Scholar 

  51. Dong, X. et al. Observation of topological edge states at the step edges on the surface of type-II Weyl semimetal TaIrTe4. ACS Nano 13, 9571–9577 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  ADS  Google Scholar 

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  ADS  Google Scholar 

  55. Mostofi, A. A. et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  CAS  ADS  Google Scholar 

  56. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  CAS  ADS  Google Scholar 

  57. Bryant, G. W. Surface states of ternary semiconductor alloys: effect of alloy fluctuations in one-dimensional models with realistic atoms. Phys. Rev. B 31, 5166 (1985).

    Article  CAS  ADS  Google Scholar 

  58. Fröhlich, H. On the theory of superconductivity: The one-dimensional case. Proc. R. Soc. A. 223, 296–305 (1954).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Cano, V. Fatemi, R. Fernando, L. Liu, H. Lu, X.-B. Qiang, Y. Ran, B. Skinner, A. Uri, I. Zeljkovic, F. Zhang and Y. Zhang for fruitful discussions. Q.M. acknowledges support from the Air Force Office of Scientific Research grant FA9550-22-1-0270 (transport measurements and data analysis). Q.M. and S.-Y.X. acknowledge support from the Center for the Advancement of Topological Semimetals, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, through the Ames Laboratory under contract DEAC02-07CH11358 (device fabrication). Q.M. also acknowledges support from the National Science Foundation (NSF) CAREER award DMR-2143426 (manuscript writing), the Canadian Institute for Advanced Research (CIFAR) Azrieli Global Scholar Program and the Alfred P. Sloan Foundation. G.C. acknowledges support from the National Research Foundation, Singapore under its Fellowship Award (NRF-NRFF13-2021-0010) and the Nanyang Assistant Professorship grant. N.N. acknowledges support from the US Department of Energy, Office of Science, under award number DE-SC0021117 (single-crystal growth and characterization of TaIrTe4). Y.S. acknowledges support from the Strategic Priority Research Program of the Chinese Academy of Sciences (grant number XDB33030000) and the Informatization Plan of the Chinese Academy of Sciences (CAS-WX2021SF-0102). K.S.B. and Y.W. acknowledge support from the Air Force Office of Scientific Research under award number FA9550-20-1-0246. X.Q. acknowledges support from the NSF under award number DMR-1753054 and from the donors of the American Chemical Society Petroleum Research Fund under grant number 65502-ND10. D.C.B. acknowledges support from the Harvard University Center for Nanoscale Systems, a member of the National Nanotechnology Coordinated Infrastructure Network, under NSF award number ECCS-2025158, and the STC Center for Integrated Quantum Materials, NSF grant number DMR-1231319. Z.S. acknowledges support from Swiss National Science Foundation under grant number P500PT-206914. M.G. acknowledges the support of the NSF Electronics, Photonics and Magnetic Devices programme through grant 2211334. A.S. acknowledges support from DMR-2103842. Portions of this research were conducted with the advanced computing resources provided by Texas A&M High Performance Research Computing. J.L. and Y.Z. are partly supported by the NSF Materials Research Science and Engineering Center programme through the UT Knoxville Center for Advanced Materials and Manufacturing (grant number DMR-2309083). L.F. and Q.M. acknowledge support from the National Science Foundation Convergence Program under grant number ITE-2235945. Ziqiang Wang is supported by the US Department of Energy, Basic Energy Sciences grant number DE-FG02-99ER45747. K.W. and T.T. acknowledge support from the Japan Society for the Promotion of Science KAKENHI (grant numbers 21H05233 and 23H02052) and World Premier International Research Center Initiative, MEXT, Japan. We also acknowledge that some of the work was carried out in the Boston College cleanroom and nanotechnology facilities.

Author information

Authors and Affiliations

Authors

Contributions

Q.M. conceived the experiments and supervised the project. J.T. fabricated the devices with the help of T.S.D., A.G., M.G., S.-Y.X. and K.S.B. J.T. carried out the electrical measurements and analysed data with the assistance from T.S.D., A.G., Z.H., Z.S., M.S., V.B. and Zihan Wang. A.S. and X.Q. carried out the first-principles calculations of the single-particle band; H.C. and G.C. carried out the calculations for different edge terminations, electronic susceptibility, CDW band structures and topology; J.L. and Y.Z. carried out the phonon dispersion calculation. L.F. and Ziqiang Wang provided the theory inputs. Y.W. and K.S.B. carried out the Raman measurements. D.C.B. carried out the scanning transmission electron microscopy characterization. T.Q., X.H., Y.S. and N.N. grew the TaIrTe4 bulk crystals. K.W. and T.T. grew the BN bulk crystals. Q.M., S.-Y.X. and J.T. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Guoqing Chang or Qiong Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Jose Hugo Garcia, Masataka Mogi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Basic characterizations of TaIrTe4 flakes.

a, Optical image displaying exfoliated TaIrTe4 flakes on a Si/SiO2 substrate. b, Atomic force microscopy (AFM) image of a TaIrTe4 flake. Inset exhibits the linecut profile, indicating a step thickness of approximately 0.8 nm. c, Raman spectrum of TaIrTe4 flakes ranging from monolayers (1L) to three layers (3L). With increasing layer numbers, the intensity ratio of A2 (@125.7 cm−1 for 1L)/A2 (@137.3 cm−1 for 1L) rises, and the A1 mode (@231.8 cm−1 for 1L) shifts toward lower wavenumbers. d, Cross-sectional scanning transmission electron microscopy (STEM) images of monolayer, bilayer, and trilayer flakes.

Extended Data Fig. 2 Fabrication processes of TaIrTe4 devices.

a,b, Schematic and corresponding fabrication processes for Design-I (a) and Design-II (b) bottom structures. c, Fabrication processes of the top structure (involving TaIrTe4 and top gate) conducted inside an argon-glovebox. Scale bars: 10 μm.

Extended Data Fig. 3 Four-probe resistance versus carrier density and temperature.

a, Device D17; b, Device D1; c, Device D2.

Extended Data Fig. 4 Temperature dependence of charge neutrality point (CNP) conductance and thermal activation fitting (device D2).

The four-probe conductance (Gxx) versus carrier density (n) is shown with temperatures ranging from 250 K to 4 K, along with corresponding thermal activation gap fits. Channel lengths: a,bLch = 220 nm; c,dLch = 270 nm; e,fLch = 550 nm; g,hLch = 850 nm; i,jLch = 950 nm; k,lLch = 1100 nm.

Extended Data Fig. 5 Nonlocal measurements without edge contribution.

a, An optical image of device D3 with half of its boundaries covered by BN. Scale bar: 10 μm. b, Device schematic and contact labelling. c, Plots of local and nonlocal voltages versus carrier density n. The current was injected from Contact 10 to 7 (Ixx = 100 nA), and the voltages were measured between Contact 9 and 8 (VL) and between Contact 11 and 12 (VNL).

Extended Data Fig. 6 Channel length dependence of the resistance at the CNP gap (QSH-I) as well as the correlated gap (QSH-II).

Displayed here are individual curves for devices D2, D5, D7, D16, as referenced in Fig. 2g and Fig. 4e.

Extended Data Fig. 7 Conductance at CNP under in-plane and out-of-plane magnetic fields.

When a magnetic field is applied, a Zeeman gap is induced at the Dirac point of the edge states, influencing the edge conductance, which can be described by a thermal activation behaviour: \(G={G}_{0}{e}^{-g{\mu }_{{\rm{B}}}| B| /2{k}_{{\rm{B}}}T}\). Here, G0 is the conductance at B = 0, g is the effective g-factor, μB is the Bohr magneton, and kB is the Boltzmann constant. a,b, Raw data G versus B for both in-plane and out-of-plane magnetic fields. c,d, Corresponding \({\rm{ln}}(G/{G}_{0})\) versus μBB/kBT, from the slope of which the g-factor can be directly extracted. The data was collected at T = 1.7 K.

Extended Data Fig. 8 Enhanced nonlocal transport in both the CNP and second insulating gaps.

a, An optical image of device D1. Scale bar: 10 μm. b, The local (VL) and nonlocal (VNL) voltages measured with Ixx = 100 nA.

Extended Data Fig. 9 Band structure and its orbital decomposition for monolayer TaIrTe4.

ac, The orbital distribution of Ta (a), Ir (b) and Te (c), showing that the lowest energy bands originate primarily from Ta orbitals. d, The red-shaded region indicates the gate-tunable range within our experiment.

Extended Data Fig. 10 Formation of QSH bands in TaIrTe4.

a, Graphene lattice structure with two distinct atoms A and B per unit cell. b, Brillouin zone of graphene with K, \({K}^{{\prime} }\) and Γ points labelled. c, Existence of Dirac cones at K and \({K}^{{\prime} }\) points, where gap openings occur upon the introduction of spin-orbit coupling, leading to QSH edge states. d, Lattice structure of monolayer TaIrTe4 with two distinct Ta atoms (Ta1 and Ta2) within each unit cell. e, Brillouin zone of TaIrTe4 with Λ1, Λ2, and Γ points labelled. f, Existence of Dirac cones at Λ1 and Λ2 points, where gap openings occur due to spin-orbit coupling, leading to QSH edge states.

Supplementary information

Supplementary Information

Supplementary Information sections 1–6, Figs. 1–40, Table 1 and References.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Ding, T.S., Chen, H. et al. Dual quantum spin Hall insulator by density-tuned correlations in TaIrTe4. Nature 628, 515–521 (2024). https://doi.org/10.1038/s41586-024-07211-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07211-8

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing