Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Couple-close construction of polycyclic rings from diradicals

Abstract

Heteroarenes are ubiquitous motifs in bioactive molecules, conferring favourable physical properties when compared to their arene counterparts1,2,3. In particular, semisaturated heteroarenes possess attractive solubility properties and a higher fraction of sp3 carbons, which can improve binding affinity and specificity. However, these desirable structures remain rare owing to limitations in current synthetic methods4,5,6. Indeed, semisaturated heterocycles are laboriously prepared by means of non-modular fit-for-purpose syntheses, which decrease throughput, limit chemical diversity and preclude their inclusion in many hit-to-lead campaigns7,8,9,10. Herein, we describe a more intuitive and modular couple-close approach to build semisaturated ring systems from dual radical precursors. This platform merges metallaphotoredox C(sp2)–C(sp3) cross-coupling with intramolecular Minisci-type radical cyclization to fuse abundant heteroaryl halides with simple bifunctional feedstocks, which serve as the diradical synthons, to rapidly assemble a variety of spirocyclic, bridged and substituted saturated ring types that would be extremely difficult to make by conventional methods. The broad availability of the requisite feedstock materials allows sampling of regions of underexplored chemical space. Reagent-controlled radical generation leads to a highly regioselective and stereospecific annulation that can be used for the late-stage functionalization of pharmaceutical scaffolds, replacing lengthy de novo syntheses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Direct annulation from bifunctional fragments.
Fig. 2: Annulation with diverse heteroaryl halide precursors.
Fig. 3: Numerous complex bifunctional linker precursors can be used in this transformation.
Fig. 4: Numerous complex drug precursors can be used in this transformation.

Similar content being viewed by others

Data availability

All data are available in the main text or in the Supplementary Information.

References

  1. Shearer, J., Castro, J. L., Lawson, A. D. G., MacCoss, M. & Taylor, R. D. Rings in clinical trials and drugs: present and future. J. Med. Chem. 65, 8699–8712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heravi, M. M. & Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Adv. 10, 44247–44311 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Burch, J. D. et al. Property- and structure-guided discovery of a tetrahydroindazole series of interleukin-2 inducible T-cell kinase inhibitors. J. Med. Chem. 57, 5714–5727 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Zak, M. et al. Minimizing CYP2C9 inhibition of exposed-pyridine NAMPT (nicotinamide phosphoribosyltransferase) inhibitors. J. Med. Chem. 59, 8345–8368 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Barsanti, P. A. et al. Structure-based drug design of novel potent and selective tetrahydropyrazolo[1,5-a]pyrazines as ATR inhibitors. ACS Med. Chem. Lett. 6, 37–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Ghera, E., Ben David, Y. & Rapoport, H. Synthesis of functionalized quinoline derivatives by annulation of pyridines. J. Org. Chem. 46, 2059–2065 (1981).

    Article  CAS  Google Scholar 

  8. Lennox, J. R., Turner, S. C. & Rapoport, H. Enantiospecific synthesis of annulated nicotine analogues from d-glutamic acid. 7-Azabicyclo[2.2.1]heptano[2.3-c]pyridines. J. Org. Chem. 66, 7078–7083 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Skupinska, K. A., McEachern, E. J., Skerlj, R. T. & Bridger, G. J. Concise preparation of amino-5,6,7,8-tetrahydroquinolines and amino-5,6,7,8-tetrahydroisoquinolines via catalytic hydrogenation of acetamidoquinolines and acetamidoisoquinolines. J. Org. Chem. 67, 7890–7893 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Twigg, D. G. et al. Partially saturated bicyclic heteroaromatics as an sp3-enriched fragment collection. Angew. Chem. Int. Ed. 55, 12479–12483 (2016).

    Article  CAS  Google Scholar 

  11. Cox, B., Booker-Milburn, K. I., Elliott, L. D., Robertson-Ralph, M. & Zdorichenko, V. Escaping from Flatland: [2+2] photocycloaddition; conformationally constrained sp3-rich scaffolds for lead generation. ACS Med. Chem. Lett. 10, 1512–1517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cox, B. et al. Escaping from Flatland: substituted bridged pyrrolidine fragments with inherent three-dimensional character. ACS Med. Chem. Lett. 11, 1185–1190 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lovering, F. Escape from Flatland 2: complexity and promiscuity. MedChemComm 4, 515–519 (2013).

    Article  CAS  Google Scholar 

  14. Lovering, F., Bikker, J. & Humblet, C. Escape from Flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Leeson, P. D. Impact of physicochemical properties on dose and hepatotoxicity of oral drugs. Chem. Res. Toxicol. 31, 494–505 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Glase, S. A., Corbin, A. E., Pugsley, T. A., Heffner, T. G. & Wise, L. D. Synthesis and dopaminergic activity of pyridine analogs of 5-hydroxy-2-(di-N-propylamino)tetralin. J. Med. Chem. 38, 3132–3137 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Gündisch, D. et al. Syntheses and evaluation of pyridazine and pyrimidine containing bioisosteres of (±)-pyrido[3.4-b]homotropane and pyrido-[3.4-b]tropane as novel nAChR ligands. Bioorg. Med. Chem. 10, 1–9 (2002).

    Article  PubMed  Google Scholar 

  18. Burgin, R. N., Jones, S. & Tarbit, B. Scope and limitations of the Minisci reaction for the synthesis of aza-heterocycles. Tetrahedron Lett. 50, 6772–6774 (2009).

    Article  CAS  Google Scholar 

  19. Luise, N. & Wyatt, P. G. Generation of polar semi-saturated bicyclic pyrazoles for fragment-based drug-discovery campaigns. Chem. Eur. J. 24, 10443–10451 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Srikrishna, A., Jagadeeswar Reddy, T. & Viswajanani, R. Reduction of quinolines to 1,2,3,4-tetrahydro derivatives employing a combination of NaCNBH3 and BF3.OEt2. Tetrahedron 52, 1631–1636 (1996).

    Article  CAS  Google Scholar 

  21. Hu, C. et al. Uncanonical semireduction of quinolines and isoquinolines via regioselective HAT-promoted hydrosilylation. J. Am. Chem. Soc. 145, 25–31 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Nicolaou, K. C., Snyder, S. A., Montagnon, T. & Vassilikogiannakis, G. The Diels–Alder reaction in total synthesis. Angew. Chem. Int. Ed. 41, 1668–1698 (2002).

    Article  CAS  Google Scholar 

  23. Molander, G. A. Diverse methods for medium ring synthesis. Acc. Chem. Res. 31, 603–609 (1998).

    Article  CAS  Google Scholar 

  24. Poplata, S., Tröster, A., Zou, Y.-Q. & Bach, T. Recent advances in the synthesis of cyclobutanes by olefin [2+2] photocycloaddition reactions. Chem. Rev. 116, 9748–9815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Joule, J. A. Heterocyclic Chemistry (Van Nostrand Reinhold Co., 2000).

  26. Harvey, F. M. & Bochet, C. G. Photochemical methods in metathesis reactions. Org. Biomol. Chem. 18, 8034–8057 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Floreancig, P. E. Handbook of cyclization reactions, vols. 1–2. J. Am. Chem. Soc. 132, 6865–6866 (2010).

    Article  CAS  Google Scholar 

  28. Theunissen, C., Ashley, M. A. & Rovis, T. Visible-light-controlled ruthenium-catalyzed olefin metathesis. J. Am. Chem. Soc. 141, 6791–6796 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Groso, E. J. & Schindler, C. S. Recent advances in the application of ring-closing metathesis for the synthesis of unsaturated nitrogen heterocycles. Synthesis 51, 1100–1114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sherwood, T. C. et al. Decarboxylative intramolecular arene alkylation using N-(acyloxy)phthalimides, an organic photocatalyst, and visible light. J. Org. Chem. 84, 8360–8379 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Bordi, S. & Starr, J. T. Hydropyridylation of olefins by intramolecular Minisci reaction. Org. Lett. 19, 2290–2293 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Troyano, F. J. A., Anwar, K., Mohr, F., Robert, G. & Gómez-Suárez, A. Deoxygenative intramolecular Minisci-type reaction to access fused heterocyclic scaffolds. Eur. J. Org. Chem. 26, e202201176 (2023).

    Article  CAS  Google Scholar 

  33. Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Levin, M. D., Kim, S. & Toste, F. D. Photoredox catalysis unlocks single-electron elementary steps in transition metal catalyzed cross-coupling. ACS Cent. Sci. 2, 293–301 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Minisci, F., Bernardi, R., Bertini, F., Galli, R. & Perchinummo, M. Nucleophilic character of alkyl radicals—VI: a new convenient selective alkylation of heteroaromatic bases. Tetrahedron 27, 3575–3579 (1971).

    Article  CAS  Google Scholar 

  37. Jin, J. & MacMillan, D. W. C. Alcohols as alkylating agents in heteroarene C–H functionalization. Nature 525, 87–90 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Proctor, R. S. J. & Phipps, R. J. Recent advances in Minisci-type reactions. Angew. Chem. Int. Ed. 58, 13666–13699 (2019).

    Article  CAS  Google Scholar 

  39. Huang, H.-M., Bellotti, P., Ma, J., Dalton, T. & Glorius, F. Bifunctional reagents in organic synthesis. Nat. Rev. Chem. 5, 301–321 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, P., Le, C. & MacMillan, D. W. C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 138, 8084–8087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sakai, H. A., Liu, W., Le, C. & MacMillan, D. W. C. Cross-electrophile coupling of unactivated alkyl chlorides. J. Am. Chem. Soc. 142, 11691–11697 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dong, Z. & MacMillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Connett, G. Lumacaftor-ivacaftor in the treatment of cystic fibrosis: design, development and place in therapy. Drug Des. Devel. Ther. 13, 2405–2412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dreher, S. D. & Krska, S. W. Chemistry Informer Libraries: conception, early experience, and role in the future of cheminformatics. Acc. Chem. Res. 54, 1586–1596 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Ketron, A. C., Denny, W. A., Graves, D. E. & Osheroff, N. Amsacrine as a topoisomerase II poison: importance of drug–DNA interactions. Biochemistry 51, 1730–1739 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Balsells, R. Lambert, B. Boyle and C. Gould for helpful discussion and for assistance in the preparation of this manuscript. A.L. also thanks C. Seath, H. Sakai, O. Garry and J. Xie for assistance in manuscript preparation. A.L. and C.J.O. thank the Ted Taylor family for a graduate fellowship. Research reported in this publication was supported by the National Institute of General Medical Sciences (NIGMS) under grant no. R35 GM134897-04, the Princeton Catalysis Initiative, Janssen R&D and gifts from Merck, Bristol Myers Squibb, Genentech, GenMab and Pfizer. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS.

Author information

Authors and Affiliations

Authors

Contributions

D.W.C.M. conceived the work. A.L. and C.J.O. developed the couple-close protocol and experimental strategy. C.B.K. and M.C.B. helped design experiments and provided guidance. All authors discussed the results and contributed to editing the manuscript and preparing the Supplementary Information.

Corresponding author

Correspondence to David W. C. MacMillan.

Ethics declarations

Competing interests

D.W.C.M. declares a competing financial interest with respect to the Integrated Photoreactor. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Proposed mechanistic scheme for the couple-close annulation reaction.

Metallaphotoredox cross-coupling (stage 1) is followed in the same reaction vessel by a photoredox-catalysed Minisci reaction (stage 2) to generate challenging semisaturated heterocyclic products. See Supplementary Information for a full description of the proposed mechanism.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, A., Oswood, C.J., Kelly, C.B. et al. Couple-close construction of polycyclic rings from diradicals. Nature 628, 326–332 (2024). https://doi.org/10.1038/s41586-024-07181-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07181-x

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing