Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alkene dialkylation by triple radical sorting

Abstract

The development of bimolecular homolytic substitution (SH2) catalysis has expanded cross-coupling chemistries by enabling the selective combination of any primary radical with any secondary or tertiary radical through a radical sorting mechanism1,2,3,4,5,6,7,8. Biomimetic9,10 SH2 catalysis can be used to merge common feedstock chemicals—such as alcohols, acids and halides—in various permutations for the construction of a single C(sp3)–C(sp3) bond. The ability to sort these two distinct radicals across commercially available alkenes in a three-component manner would enable the simultaneous construction of two C(sp3)–C(sp3) bonds, greatly accelerating access to complex molecules and drug-like chemical space11. However, the simultaneous in situ formation of electrophilic and primary nucleophilic radicals in the presence of unactivated alkenes is problematic, typically leading to statistical radical recombination, hydrogen atom transfer, disproportionation and other deleterious pathways12,13. Here we report the use of bimolecular homolytic substitution catalysis to sort an electrophilic radical and a nucleophilic radical across an unactivated alkene. This reaction involves the in situ formation of three distinct radical species, which are then differentiated by size and electronics, allowing for regioselective formation of the desired dialkylated products. This work accelerates access to pharmaceutically relevant C(sp3)-rich molecules and defines a distinct mechanistic approach for alkene dialkylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radical-sorting-enabled alkene dialkylation.
Fig. 2: Proposed mechanism of alkene dialkylation.
Fig. 3: Alkene scope.
Fig. 4: Scope of electrophilic and nucleophilic radicals.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Liu, W., Lavagnino, M. N., Gould, C. A., Alcazar, J. & MacMillan, D. W. C. A biomimetic SH2 cross-coupling mechanism for quaternary sp3–carbon formation. Science 374, 1258–1263 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsymbal, A. V., Bizzini, L. D. & MacMillan, D. W. C. Nickel catalysis vis SH2 homolytic substitution: the double decarboxylative cross-coupling of aliphatic acids. J. Am. Chem. Soc. 144, 21278–21286 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mao, E. & MacMillan, D. W. C. Late-stage C(sp3)–H methylation of drug molecules. J. Am. Chem. Soc. 145, 2787–2793 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sakai, H. A. & MacMillan, D. W. C. Nontraditional fragment coupling of alcohol and carboxylic acids: C(sp3)–C(sp3) cross-coupling via radical sorting. J. Am. Chem. Soc. 144, 6185–6192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gould, C. A., Pace, A. L. & MacMillan, D. W. C. Rapid and modular access to quaternary carbons from tertiary alcohols via bimolecular homolytic substitution. J. Am. Chem. Soc. 145, 16330–16336 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gan, X.-C. et al. Iron-catalyzed hydrobenzylation: stereoselective synthesis of (−)-Eugenial C. J. Am. Chem. Soc. 145, 15714–15720 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Gan, X.-C. et. al. Carbon quaternization of redox active esters and olefins via decarboxylative coupling. Preprint at https://doi.org/10.26434/chemrxiv-2023-7vb8x-v2 (2023).

  8. Kong, L., Gan, X.-C., Lovett, V. A. P. & Shenvi, R. A. Alkene hydrobenzylation by a single catalyst that mediates iterative outer-sphere steps. J. Am. Chem. Soc. 146, 2351–2357 (2024).

  9. Zhang, Q., van der Donk, W. A. & Liu, W. Radical-mediated enzymatic methylation: a tale of two SAMS. Acc. Chem. Res. 45, 555–564 (2012).

    Article  PubMed  Google Scholar 

  10. Bauerle, M. R., Schwalm, E. L. & Booker, S. J. Mechanistic diversity of radical S-adenomethionine (SAM)-dependent methylation. J. Biol. Chem. 290, 3995–4002 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Qi, X. & Diao, T. Nickel-catalyzed dicarbofunctionalization of alkenes. ACS Catal. 10, 8542–8556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gibian, M. J. & Corley, R. C. Organic radical-radical reactions. Disproportionations vs. combination. Chem. Rev. 73, 441–464 (1973).

    Article  CAS  Google Scholar 

  13. Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 59, 74–108 (2020).

    Article  ADS  CAS  Google Scholar 

  14. Lovering, F. Escape from flatland 2: complexity and promiscuity. Med. Chem. Commun. 4, 515–519 (2013).

    Article  CAS  Google Scholar 

  15. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dombrowski, A. W. et al. Expanding the medicinal chemist toolbox: comparing seven C(sp2)–C(sp3) cross-coupling methods by library synthesis. ACS Med. Chem. Lett. 11, 597–604 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Simoes, J. A. M. & Beauchamp, J. L. Transition metal–hydrogen and metal–carbon bond strengths: the keys to catalysis. Chem. Rev. 90, 629–688 (1990).

    Article  CAS  Google Scholar 

  18. Quasdorf, K. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocenters. Nature 516, 181–191 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dhungana, R. K., Sapkota, R. R., Wickham, L. M., Niroula, D. & Giri, R. Ni-catalyzed regioselective 1,2-dialkylation of alkenes enabled by the formation of two C(sp3)–C(sp3) bonds. J. Am. Chem. Soc. 142, 20930–20936 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frisch, A. C. & Beller, M. Catalysts for cross-coupling reactions with non-activated alkyl halides. Angew. Chem. Int. Ed. 44, 674–688 (2005).

    Article  CAS  Google Scholar 

  22. Zhang, J.-X. & Shu, W. Ni-catalyzed reductive 1,2-cross-dialkylation of unactivated alkenes with two alkyl bromides. Org. Lett. 24, 3844–3849 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Derosa, J., van der Puyl, V. A., Tran, V. T., Liu, M. & Engle, K. M. Directed nickel-catalyzed 1,2-dialkylation of alkenyl carbonyl compounds. Chem. Sci. 9, 5278–5283 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, T. et al. Chemoselective union of olefins, organohalides, and redox-active esters enables regioselective alkene dialkylation. J. Am. Chem. Soc. 142, 21410–21419 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Rao, C., Zhang, T., Liu, H. & Huang, H. Double alkyl–alkyl bond construction across alkenes enabled by nickel electron-shuttle catalysis. Nat. Catal. 6, 847–857 (2023).

    Article  CAS  Google Scholar 

  26. Le, C., Chen, T. Q., Liang, T., Zhang, P. & MacMillan, D. W. C. A radical approach to the copper oxidative addition problem: trifluoromethylation of bromoarenes. Science 360, 1010–1014 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dong, Z. & MacMillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production form an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005).

    Article  CAS  Google Scholar 

  29. Kharasch, M. S., Skell, P. S. & Fisher, P. Reactions of atoms and free radicals in solution. XII. The addition of bromo esters to olefins. J. Am. Chem. Soc. 70, 1055–1059 (1948).

    Article  CAS  Google Scholar 

  30. Bian, K.-J. et al. Modular difunctionalization of unactivated alkenes through bio-inspired radical ligand transfer catalysis. J. Am. Chem. Soc. 144, 11810–11821 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Patra, S., Giri, R. & Katayev, D. Nitrative difunctionalization of alkenes via cobalt-mediated radical ligand transfer and radical-polar crossover photoredox catalysis. ACS Catal. 13, 16136–16147 (2023).

    Article  CAS  Google Scholar 

  32. Nair, A. S. et al. FDA-approved trifluoromethyl group-containing drugs: a review of 20 years. Processes 10, 2054 (2022).

    Article  CAS  Google Scholar 

  33. Vaas, S. et al. Principles and applications of CF2X moieties as unconventional halogen bond donors in medicinal chemistry, chemical biology, and drug discovery. J. Med. Chem. 66, 10202–10225 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schönherr, H. & Cernak, T. Profound methyl effects in drug discovery and a call for new C–H methylation reactions. Angew. Chem. Int. Ed. 52, 12256–12267 (2013).

    Article  Google Scholar 

  35. Mayr, H., Kempf, B. & Ofial, A. R. π-Nucleophilicity in carbon–carbon bond-forming reactions. Acc. Chem. Res. 36, 66–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, J. Z., Sakai, H. A. & MacMillan, D. W. C. Alcohols as alkylating agents: photoredox-catalyzed conjugate alkylation via in situ deoxygenation. Angew. Chem. Int. Ed. 61, e202207150 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. W. Dow and C. A. Gould for helpful scientific discussion. We also thank R. Lambert for assistance in preparing this manuscript. Research reported in this work was supported by the National Institute of General Medical Sciences of the National Institutes of Health (Grant R35 GM134897-04) and kind gifts from Merck, Pfizer, Janssen, Bristol-Myers Squibb, Genentech and Genmab. J.Z.W. and W.L.L. acknowledge Princeton University, E. Taylor and the Taylor family for an Edward C. Taylor Fellowship. W.L.L. acknowledges the National Science Foundation for a predoctoral fellowship (Award DGE-2039656).

Author information

Authors and Affiliations

Authors

Contributions

J.Z.W., W.L.L. and D.W.C.M. designed the experiments. J.Z.W. and W.L.L. performed and analysed the experiments. J.Z.W., W.L.L. and D.W.C.M. prepared this manuscript.

Corresponding author

Correspondence to David W. C. MacMillan.

Ethics declarations

Competing interests

D.W.C.M. declares a competing financial interest with respect to the Penn PhD Integrated Photoreactor, which is used to irradiate reactions in this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Julian West and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General information, optimization tables, control experiments, mechanistic studies, general procedures, starting material characterization, experimental data for isolated products and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.Z., Lyon, W.L. & MacMillan, D.W.C. Alkene dialkylation by triple radical sorting. Nature 628, 104–109 (2024). https://doi.org/10.1038/s41586-024-07165-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07165-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing