Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The power and potential of mitochondria transfer

Abstract

Mitochondria are believed to have originated through an ancient endosymbiotic process in which proteobacteria were captured and co-opted for energy production and cellular metabolism. Mitochondria segregate during cell division and differentiation, with vertical inheritance of mitochondria and the mitochondrial DNA genome from parent to daughter cells. However, an emerging body of literature indicates that some cell types export their mitochondria for delivery to developmentally unrelated cell types, a process called intercellular mitochondria transfer. In this Review, we describe the mechanisms by which mitochondria are transferred between cells and discuss how intercellular mitochondria transfer regulates the physiology and function of various organ systems in health and disease. In particular, we discuss the role of mitochondria transfer in regulating cellular metabolism, cancer, the immune system, maintenance of tissue homeostasis, mitochondrial quality control, wound healing and adipose tissue function. We also highlight the potential of targeting intercellular mitochondria transfer as a therapeutic strategy to treat human diseases and augment cellular therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of mitochondria transfer.
Fig. 2: Functional roles of mitochondria transfer.

Similar content being viewed by others

Data availability

Data sharing is not applicable because no new data were created or analysed in this Review article.

References

  1. Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Monzel, A. S., Enríquez, J. A. & Picard, M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat. Metab. 5, 546–562 (2023).

    Article  PubMed  Google Scholar 

  3. Mishra, P. & Chan, D. C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spees, J. L., Olson, S. D., Whitney, M. J. & Prockop, D. J. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl Acad. Sci. USA 103, 1283–1288 (2006). This article is one of the first to demonstrate that ρ0 cells can obtain mitochondria from neighbouring cells to rescue aerobic respiration and support energetically demanding processes such as cell division.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Okafo, G., Prevedel, L. & Eugenin, E. Tunneling nanotubes (TNT) mediate long-range gap junctional communication: implications for HIV cell to cell spread. Sci. Rep. 7, 16660 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Yao, Y. et al. Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation. Stem Cell Rep. 11, 1120–1135 (2018).

    Article  CAS  Google Scholar 

  7. Tishchenko, A. et al. Cx43 and associated cell signaling pathways regulate tunneling nanotubes in breast cancer cells. Cancers 12, 2798 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lou, E. et al. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS ONE 7, e33093 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Plotnikov, E. Y. et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J. Cell. Mol. Med. 12, 1622–1631 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Cselenyák, A., Pankotai, E., Horváth, E. M., Kiss, L. & Lacza, Z. Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol. 11, 29 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. He, K. et al. Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc. Res. 92, 39–47 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Vallabhaneni, K. C., Haller, H. & Dumler, I. Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev. 21, 3104–3113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, K. et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc. Res. 92, 10–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Han, H. et al. Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model. Mol. Med. Rep. 13, 1517–1524 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Yang, H. et al. Biochip-based study of unidirectional mitochondrial transfer from stem cells to myocytes via tunneling nanotubes. Biofabrication 8, 015012 (2016).

    Article  ADS  PubMed  Google Scholar 

  16. Zhang, Y. et al. iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem Cell Rep. 7, 749–763 (2016).

    Article  CAS  Google Scholar 

  17. Shen, J. et al. Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Cell Death Dis. 9, 81 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jackson, M. V. et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells 34, 2210–2223 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Jackson, M. V. & Krasnodembskaya, A. D. Analysis of mitochondrial transfer in direct co-cultures of human monocyte-derived macrophages (MDM) and mesenchymal stem cells (MSC). Bio Protoc. 7, e2255 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Mistry, J. J. et al. ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. Proc. Natl Acad. Sci. USA 116, 24610–24619 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Islam, M. N. et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18, 759–765 (2012). This article demonstrates that mitochondria transfer has anti-inflammatory properties in the lung and can protect against acute lung injury in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, X. et al. Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am. J. Respir. Cell Mol. Biol. 51, 455–465 (2014).

    Article  PubMed  Google Scholar 

  23. Ahmad, T. et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 33, 994–1010 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sinclair, K. A., Yerkovich, S. T., Hopkins, P. M.-A. & Chambers, D. C. Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Res. Ther. 7, 91 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jiang, D. et al. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis. 7, e2467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pasquier, J. et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J. Transl. Med. 11, 94 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Osswald, M. et al. Brain tumour cells interconnect to a functional and resistant network. Nature 528, 93–98 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Desir, S. et al. Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells. Oncotarget 7, 43150–43161 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lu, J. et al. Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells. Oncotarget 8, 15539–15552 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Marlein, C. R. et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood 130, 1649–1660 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Díaz-Carballo, D. et al. Cytotoxic stress induces transfer of mitochondria-associated human endogenous retroviral RNA and proteins between cancer cells. Oncotarget 8, 95945–95964 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ippolito, L. et al. Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene 38, 5339–5355 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Marlein, C. R. et al. CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res. 79, 2285–2297 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Pinto, G. et al. Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids. Biochem. J. 478, 21–39 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, X. & Gerdes, H.-H. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 22, 1181–1191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Babenko, V. A. et al. Improving the post-stroke therapeutic potency of mesenchymal multipotent stromal cells by cocultivation with cortical neurons: the role of crosstalk between cells. Stem Cells Transl. Med. 4, 1011–1020 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boukelmoune, N., Chiu, G. S., Kavelaars, A. & Heijnen, C. J. Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects against the neurotoxic effects of cisplatin. Acta Neuropathol. Commun. 6, 139 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, H. et al. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction. Theranostics 9, 2017–2035 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nasoni, M. G. et al. Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemic-like injury in hippocampal HT22 cells. J. Pineal Res. 71, e12747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nitzan, K. et al. Mitochondrial transfer ameliorates cognitive deficits, neuronal loss, and gliosis in Alzheimer’s disease mice. J. Alzheimers Dis. 72, 587–604 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Watson, D. C. et al. GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity. Nat. Cancer 4, 648–664 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Crewe, C. et al. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab. 33, 1853–1868.e11 (2021). This article shows that metabolically stressed adipocytes release mitochondria in extracellular vesicles into circulation for delivery to other organs, such as the heart, where they metabolically precondition the heart to surmount ischaemia–reperfusion injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rosina, M. et al. Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue. Cell Metab. 34, 533–548.e12 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suh, J. et al. Mitochondrial fragmentation and donut formation enhance mitochondrial secretion to promote osteogenesis. Cell Metab. 35, 345–360.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Nicolás-Ávila, J. A. et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94–109.e23 (2020). This article reports that metabolically stressed adipocytes eject exophers containing damaged mitochondria and deliver them to tissue-resident macrophages for elimination, thereby supporting maintenance of mitochondria quality control in the donor cardiomyocytes.

    Article  PubMed  Google Scholar 

  46. Liang, W. et al. Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired. Nat. Commun. 14, 5031 (2023).

  47. Bucci, C., Thomsen, P., Nicoziani, P., McCarthy, J. & van Deurs, B. Rab7: a key to lysosome biogenesis. Mol. Biol. Cell 11, 467–480 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boudreau, L. H. et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 124, 2173–2183 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hayakawa, K. et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555 (2016). This article reveals that astrocytes transfer mitochondria to neurons to limit ischaemic stroke pathology, indicating that intercellular mitochondria transfer can be elicited in disease states to mitigate tissue damage.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. van der Vlist, M. et al. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron 110, 613–626.e9 (2022).

    Article  PubMed  Google Scholar 

  51. Peruzzotti-Jametti, L. et al. Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biol. 19, e3001166 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dache, Z. A. A. et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 34, 3616–3630 (2020).

    Article  Google Scholar 

  53. Borcherding, N. et al. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into blood. Cell Metab. 34, 1499–1513.e8 (2022). This article shows that LCFAs determine whether adipocyte-derived mitochondria are transferred locally to macrophages or diverted into the circulation for delivery to distant organs, and it shows that in vivo administration of purified mitochondria can rescue cell-intrinsic defects in aerobic respiration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stephens, O. R. et al. Characterization and origins of cell-free mitochondria in healthy murine and human blood. Mitochondrion 54, 102–112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stier, A. Human blood contains circulating cell-free mitochondria, but are they really functional? Am. J. Physiol. Endocrinol. Metab. 320, E859–E863 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Joshi, A. U. et al. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci. 22, 1635–1648 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Levoux, J. et al. Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming. Cell Metab. 33, 283–299.e9 (2021). This article reports that platelet-derived mitochondria are captured by mesenchymal stem cells to promote wound healing of skin, implicating intercellular mitochondria transfer in the repair and maintenance of barrier surfaces.

    Article  CAS  PubMed  Google Scholar 

  58. Brestoff, J. R. et al. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab. 33, 270–282.e8 (2021). This article demonstrates that adipocytes transfer mitochondria to macrophages in a heparan sulfate-dependent process that is impaired in obesity and links disruption in mitochondria transfer to macrophages with increased susceptibility to obesity.

    Article  CAS  PubMed  Google Scholar 

  59. Mulloy, B. & Forster, M. J. Conformation and dynamics of heparin and heparan sulfate. Glycobiology 10, 1147–1156 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Cowan, D. B. et al. Transit and integration of extracellular mitochondria in human heart cells. Sci. Rep. 7, 17450 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  61. Kim, M. J., Hwang, J. W., Yun, C.-K., Lee, Y. & Choi, Y.-S. Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci. Rep. 8, 3330 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  62. Caicedo, A. et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci. Rep. 5, 9073 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McCully, J. D. et al. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 296, H94–H105 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Masuzawa, A. et al. Transplantation of autologously derived mitochondria protects the heart from ischemia–reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 304, H966–H982 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Emani, S. M., Piekarski, B. L., Harrild, D., Nido, P. J. D. & McCully, J. D. Autologous mitochondrial transplantation for dysfunction after ischemia–reperfusion injury. J. Thorac. Cardiovasc. Surg. 154, 286–289 (2017).

    Article  PubMed  Google Scholar 

  66. Norat, P. et al. Intraarterial transplantation of mitochondria after ischemic stroke reduces cerebral infarction. Stroke Vasc. Interv. Neurol. 3, e000644 (2023).

    PubMed  Google Scholar 

  67. Chou, S. H.-Y. et al. Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke 48, 2231–2237 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tan, A. S. et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21, 81–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Dong, L.-F. et al. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife 6, e22187 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kidwell, C. U. et al. Transferred mitochondria accumulate reactive oxygen species, promoting proliferation. eLife 12, e85494 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Salaud, C. et al. Mitochondria transfer from tumor-activated stromal cells (TASC) to primary glioblastoma cells. Biochem. Biophys. Res. Commun. 533, 139–147 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Rabas, N. et al. PINK1 drives production of mtDNA-containing extracellular vesicles to promote invasiveness. J. Cell Biol. 220, e202006049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Saha, T. et al. Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. Nat. Nanotechnol. 17, 98–106 (2022). This article demonstrates that cancer cells deplete tumour-infiltrating lymphocytes of mitochondria to simultaneously support their own energetic demands and impair antitumour immunity.

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Chang, J.-C. et al. Mitochondrial transplantation regulates antitumour activity, chemoresistance and mitochondrial dynamics in breast cancer. J. Exp. Clin. Cancer Res. 38, 30 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Moschoi, R. et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128, 253–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Hutto, R. A. et al. Cone photoreceptors transfer damaged mitochondria to Müller glia. Cell Rep. https://doi.org/10.1016/j.celrep.2023.112115 (2023).

  77. Hayakawa, K. et al. Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells 36, 1404–1410 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Liang, X. et al. Direct administration of mesenchymal stem cell-derived mitochondria improves cardiac function after infarction via ameliorating endothelial senescence. Bioeng. Transl. Med. 8, e10365 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Weiß, E. & Kretschmer, D. Formyl-peptide receptors in infection, inflammation, and cancer. Trends Immunol. 39, 815–829 (2018).

    Article  PubMed  Google Scholar 

  80. Wu, G. et al. Extracellular mitochondrial DNA promote NLRP3 inflammasome activation and induce acute lung injury through TLR9 and NF-κB. J. Thorac. Dis. https://doi.org/10.21037/jtd.2019.10.26 (2019).

  81. Scozzi, D. et al. Mitochondrial damage-associated molecular patterns released by lung transplants are associated with primary graft dysfunction. Am. J. Transplant. 19, 1464–1477 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pollara, J., Edwards, R. W., Lin, L., Bendersky, V. A. & Brennan, T. V. Circulating mitochondria in deceased organ donors are associated with immune activation and early allograft dysfunction. JCI Insight https://doi.org/10.1172/jci.insight.121622 (2018).

  83. Luz-Crawford, P. et al. Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer. Stem Cell Res. Ther. 10, 232 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Court, A. C. et al. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep. 21, e48052 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu, B. et al. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat. Immunol. 22, 1551–1562 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Giwa, R. & Brestoff, J. R. Mitochondria transfer to CD4+ T cells may alleviate rheumatoid arthritis by suppressing pro-inflammatory cytokine production. Immunometabolism https://doi.org/10.20900/immunometab20220009 (2022).

  87. Huang, Y. et al. TP53/p53 facilitates stress-induced exosome and protein secretion by adipocytes. Diabetes https://doi.org/10.2337/db22-1027 (2023).

  88. Gao, J. et al. Endoplasmic reticulum mediates mitochondrial transfer within the osteocyte dendritic network. Sci. Adv. 5, eaaw7215 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Herbert, M. & Turnbull, D. Progress in mitochondrial replacement therapies. Nat. Rev. Mol. Cell Biol. 19, 71–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Barritt, J. A., Brenner, C. A., Malter, H. E. & Cohen, J. Mitochondria in human offspring derived from ooplasmic transplantation. Hum. Reprod. 16, 513–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Jacoby, E. et al. Mitochondrial augmentation of CD34+ cells from healthy donors and patients with mitochondrial DNA disorders confers functional benefit. npj Regen. Med. 6, 58 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jacoby, E. et al. Mitochondrial augmentation of hematopoietic stem cells in children with single large-scale mitochondrial DNA deletion syndromes. Sci. Transl. Med. 14, eabo3724 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Ikeda, G. et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J. Am. Coll. Cardiol. 77, 1073–1088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nakamura, Y., Park, J.-H. & Hayakawa, K. Therapeutic use of extracellular mitochondria in CNS injury and disease. Exp. Neurol. 324, 113114 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Huang, P.-J. et al. Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transplant. 25, 913–927 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.R.B. is supported by the NIH Director’s Early Independence Award (DP5 OD028125) and the Burroughs Wellcome Fund Career Award for Medical Scientists (CAMS 1019648).

Author information

Authors and Affiliations

Authors

Contributions

N.B. and J.R.B. wrote and approved the manuscript. J.R.B. conceived of the work and supervised its development.

Corresponding author

Correspondence to Jonathan R. Brestoff.

Ethics declarations

Competing interests

J.R.B. has pending patent applications related to mitochondria transplantation for the treatment of mitochondrial disorders and lipid metabolism; immunoassays for serum-free light chains; and an immunotherapy for atopic dermatitis. He is a member of the Scientific Advisory Board for LUCA Science, Inc., has consulted for DeciBio and Flagship Pioneering within the past 12 months, and receives royalties from Springer Nature Group. N.B. is a consultant for Santa Ana Bio and an advisor for Omniscope.

Peer review

Peer review information

Nature thanks Anne-Marie Rodriguez, Gerald Shadel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borcherding, N., Brestoff, J.R. The power and potential of mitochondria transfer. Nature 623, 283–291 (2023). https://doi.org/10.1038/s41586-023-06537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06537-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing