Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Moiré synaptic transistor with room-temperature neuromorphic functionality

Abstract

Moiré quantum materials host exotic electronic phenomena through enhanced internal Coulomb interactions in twisted two-dimensional heterostructures1,2,3,4. When combined with the exceptionally high electrostatic control in atomically thin materials5,6,7,8, moiré heterostructures have the potential to enable next-generation electronic devices with unprecedented functionality. However, despite extensive exploration, moiré electronic phenomena have thus far been limited to impractically low cryogenic temperatures9,10,11,12,13,14, thus precluding real-world applications of moiré quantum materials. Here we report the experimental realization and room-temperature operation of a low-power (20 pW) moiré synaptic transistor based on an asymmetric bilayer graphene/hexagonal boron nitride moiré heterostructure. The asymmetric moiré potential gives rise to robust electronic ratchet states, which enable hysteretic, non-volatile injection of charge carriers that control the conductance of the device. The asymmetric gating in dual-gated moiré heterostructures realizes diverse biorealistic neuromorphic functionalities, such as reconfigurable synaptic responses, spatiotemporal-based tempotrons and Bienenstock–Cooper–Munro input-specific adaptation. In this manner, the moiré synaptic transistor enables efficient compute-in-memory designs and edge hardware accelerators for artificial intelligence and machine learning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Non-volatile charge injection in MSTs enabled by an electronically controlled ratcheting mechanism.
Fig. 2: Synaptic responses and applications of MSTs.
Fig. 3: Dual-gate response of MSTs.
Fig. 4: Input-specific adaptation for associative learning based on MSTs.

Similar content being viewed by others

Data availability

Data for all figures are available at the Harvard Dataverse repository (https://doi.org/10.7910/DVN/1LZUH5).

Code availability

Code for all algorithms is available from the Harvard Dataverse repository (https://doi.org/10.7910/DVN/1LZUH5).

References

  1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Sangwan, V. K. et al. Self-aligned van der Waals heterojunction diodes and transistors. Nano Lett. 18, 1421–1427 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Beck, M. E. & Hersam, M. C. Emerging opportunities for electrostatic control in atomically thin devices. ACS Nano 14, 6498–6518 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Beck, M. E. et al. Spiking neurons from tunable Gaussian heterojunction transistors. Nat. Commun. 11, 1565 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 18, 395–400 (2022).

    Article  CAS  Google Scholar 

  13. Chen, D. et al. Excitonic insulator in a heterojunction moiré superlattice. Nat. Phys. 18, 1171–1176 (2022).

    Article  CAS  Google Scholar 

  14. Zhang, Z. et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys. 18, 1214–1220 (2022).

    Article  CAS  Google Scholar 

  15. Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Article  Google Scholar 

  16. Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Comp. Eng. 2, 022501 (2022).

    Article  Google Scholar 

  17. Akarvardar, K. & Wong, H.-S. P. Technology prospects for data-intensive computing. Proc. IEEE 111, 92–112 (2023).

    Article  CAS  Google Scholar 

  18. Sangwan, V. K. & Hersam, M. C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15, 517–528 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Xue, F. et al. Integrated memory devices based on two-dimensional materials. Adv. Mater. 34, 2201880 (2022).

    Article  CAS  Google Scholar 

  20. Sangwan, V. K., Liu, S. E., Trivedi, A. R. & Hersam, M. C. Two-dimensional materials for bio-realistic neuronal computing networks. Matter 5, 4133–4152 (2022).

    Article  Google Scholar 

  21. Niu, R. et al. Giant ferroelectric polarization in a bilayer graphene heterostructure. Nat. Commun. 13, 6241 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Woods, C. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  ADS  CAS  Google Scholar 

  24. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article  ADS  CAS  Google Scholar 

  25. Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng, Z. et al. Electronic ratchet effect in a moiré system: signatures of excitonic ferroelectricity. Preprint at arxiv.org/abs/2306.03922 (2023).

  29. Gallimore, A. R., Kim, T., Tanaka-Yamamoto, K. & De Schutter, E. Switching on depression and potentiation in the cerebellum. Cell Rep. 22, 722–733 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Tian, H. et al. Emulating bilingual synaptic response using a junction-based artificial synaptic device. ACS Nano 11, 7156–7163 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Yeh, C.-W. S. & Wong, S. S. Compact one-transistor-N-RRAM array architecture for advanced CMOS technology. IEEE J. Solid-State Circuits 50, 1299–1309 (2015).

    Article  ADS  Google Scholar 

  32. Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018).

    Article  Google Scholar 

  33. Deng, L. The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29, 141–142 (2012).

    Article  ADS  Google Scholar 

  34. Hopfield, J. J. Pattern recognition computation using action potential timing for stimulus representation. Nature 376, 33–36 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Gütig, R. & Sompolinsky, H. The tempotron: a neuron that learns spike timing–based decisions. Nat. Neurosci. 9, 420–428 (2006).

    Article  PubMed  Google Scholar 

  36. Cooper, L. N. & Bear, M. F. The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 13, 798–810 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Philpot, B. D., Sekhar, A. K., Shouval, H. Z. & Bear, M. F. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29, 157–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Gjorgjieva, J., Clopath, C., Audet, J. & Pfister, J.-P. A triplet spike-timing–dependent plasticity model generalizes the Bienenstock–Cooper–Munro rule to higher-order spatiotemporal correlations. Proc. Natl Acad. Sci. USA 108, 19383–19388 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Z. et al. Toward a generalized Bienenstock–Cooper–Munro rule for spatiotemporal learning via triplet-STDP in memristive devices. Nat. Commun. 11, 1510 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo, W., Fouda, M. E., Eltawil, A. M. & Salama, K. N. Neural coding in spiking neural networks: a comparative study for robust neuromorphic systems. Front. Neurosci. 15, 638474 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hu, S. et al. Associative memory realized by a reconfigurable memristive Hopfield neural network. Nat. Commun. 6, 7522 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. De Zeeuw, C. I. & Yeo, C. H. Time and tide in cerebellar memory formation. Curr. Opin. Neurobiol. 15, 667–674 (2005).

    Article  PubMed  Google Scholar 

  43. Prince, L. Y., Bacon, T. J., Tigaret, C. M. & Mellor, J. R. Neuromodulation of the feedforward dentate gyrus–CA3 microcircuit. Front. Synaptic Neurosci. 8, 32 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hu, H., Ye, J., Zhu, G., Ren, Z. & Zhang, C. Generalizable episodic memory for deep reinforcement learning. In Int. Conference on Machine Learning 4380–4390 (PMLR, 2021); https://proceedings.mlr.press/v139/hu21d.html.

  45. Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pietrzak, P., Szczęsny, S., Huderek, D. & Przyborowski, Ł. Overview of spiking neural network learning approaches and their computational complexities. Sensors 23, 3037 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Ma, K. Y. et al. Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111). Nature 606, 88–93 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Zhang, J. et al. Fast synthesis of large-area bilayer graphene film on Cu. Nat. Commun. 14, 3199 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mannix, A. J. et al. Robotic four-dimensional pixel assembly of van der Waals solids. Nat. Nanotechnol. 17, 361–366 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was primarily supported by the National Science Foundation Materials Research Science and Engineering Center at Northwestern University (Grant DMR-1720139). Work in the P.J.-H. group was partially supported by the National Science Foundation (QII-TAQS Grant OMA-1936263), by the Massachusetts Institute of Technology/Microsystems Technology Laboratories Samsung Semiconductor Research Fund, by the Gordon and Betty Moore Foundation Emergent Phenomena in Quantum Systems Initiative (Grant GBMF9463) and by the Fundación Ramon Areces. P.J.-H. and Q.M. also acknowledge partial support from the Air Force Office of Scientific Research (Grant FA9550-21-1-0319). This work was performed in part at the Harvard University Center for Nanoscale Systems, a member of the National Nanotechnology Coordinated Infrastructure Network, which is supported by the National Science Foundation (Grant ECCS-1541959). Q.M. acknowledges support from the National Science Foundation Convergence Program (Grant ITE-2235945) and the Canadian Institute for Advanced Research Azrieli Global Scholars Program. Z.Z. acknowledges support from the National Science Foundation Graduate Research Fellowship (Grant 2141064). K.W. and T.T. acknowledge support from the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (Grants 19H05790, 20H00354 and 21H05233).

Author information

Authors and Affiliations

Authors

Contributions

P.J.-H., Q.M. and M.C.H. conceived the idea and experiments. X.Y., Z.Z., X.W. and S.E.L. fabricated devices and performed all measurements and analysis under the supervision of P.J.-H., Q.M. and M.C.H. X.Y., V.K.S. and J.H.Q. performed the neural network simulations. S.-Y.X. contributed to understanding the underlying device mechanism. K.W. and T.T. grew the bulk hexagonal boron nitride single crystals. All authors discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Pablo Jarillo-Herrero, Qiong Ma or Mark C. Hersam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks James Aimone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary sections I–XII, Figs. 1–18 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Zheng, Z., Sangwan, V.K. et al. Moiré synaptic transistor with room-temperature neuromorphic functionality. Nature 624, 551–556 (2023). https://doi.org/10.1038/s41586-023-06791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06791-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing