Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

mRNA reading frame maintenance during eukaryotic ribosome translocation

Abstract

One of the most critical steps of protein synthesis is coupled translocation of messenger RNA (mRNA) and transfer RNAs (tRNAs) required to advance the mRNA reading frame by one codon. In eukaryotes, translocation is accelerated and its fidelity is maintained by elongation factor 2 (eEF2)1,2. At present, only a few snapshots of eukaryotic ribosome translocation have been reported3,4,5. Here we report ten high-resolution cryogenic-electron microscopy (cryo-EM) structures of the elongating eukaryotic ribosome bound to the full translocation module consisting of mRNA, peptidyl-tRNA and deacylated tRNA, seven of which also contained ribosome-bound, naturally modified eEF2. This study recapitulates mRNA–tRNA2-growing peptide module progression through the ribosome, from the earliest states of eEF2 translocase accommodation until the very late stages of the process, and shows an intricate network of interactions preventing the slippage of the translational reading frame. We demonstrate how the accuracy of eukaryotic translocation relies on eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs. Our findings shed light on the mechanism of translation arrest by the anti-fungal eEF2-binding inhibitor, sordarin. We also propose that the sterically constrained environment imposed by diphthamide, a conserved eukaryotic posttranslational modification in eEF2, not only stabilizes correct Watson–Crick codon–anticodon interactions but may also uncover erroneous peptidyl-tRNA, and therefore contribute to higher accuracy of protein synthesis in eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of eukaryotic ribosome TIs solved by cryo-EM.
Fig. 2: eEF2 accommodation on the 80S ribosome and interactions of domain IV with ASL of peptidyl-tRNA in TI-1 and TI-2.
Fig. 3: Role of diphthamide in peptidyl-tRNA codon–anticodon stabilization.
Fig. 4: mRNA–tRNA interactions with the SSU of the eukaryotic ribosome at different elongation states.
Fig. 5: Role of S. cerevisiae hypermodifications m1acp3Ψ1191 of 18S and wybutosine (yW37) of tRNAPhe.

Similar content being viewed by others

Data availability

Atomic coordinates and cryo-EM maps generated during this study are available through the PDB and the Electron Microscopy Data bank (EMDB). The complexes have been deposited under following accession codes: PRE-H1 (8CCS, EMD-16563), PRE-H2 (8CDL, EMD-16591), TI-1 (8CF5, EMD-16616), TI-2 (8CDR, EMD-16594), TI-3 (8CG8, EMD-16634), TI-4 (8CEH, EMD-16609), TI-5 (8CIV, EMD-16684), NR (8CGN, EMD-16648), TI-1* (8CKU, EMD-16702) and TI-4* (8CMJ, EMD-16729).

References

  1. Ortiz, P. A., Ulloque, R., Kihara, G. K., Zheng, H. & Kinzy, T. G. Translation elongation factor 2 anticodon mimicry domain mutants affect fidelity and diphtheria toxin resistance. J. Biol. Chem. 281, 32639–32648 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, S. et al. Diphthamide modification on eukaryotic elongation factor 2 is needed to assure fidelity of mRNA translation and mouse development. Proc. Natl Acad. Sci. USA 109, 13817–13822 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Djumagulov, M. et al. Accuracy mechanism of eukaryotic ribosome translocation. Nature 600, 543–546 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Flis, J. et al. tRNA translocation by the eukaryotic 80S ribosome and the impact of GTP hydrolysis. Cell Rep. 25, 2676–2688 e2677 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taylor, D. J. et al. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J. 26, 2421–2431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rundlet, E. J. et al. Structural basis of early translocation events on the ribosome. Nature 595, 741–745 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carbone, C. E. et al. Time-resolved cryo-EM visualizes ribosomal translocation with EF-G and GTP. Nat. Commun. 12, 7236 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Petrychenko, V. et al. Structural mechanism of GTPase-powered ribosome-tRNA movement. Nat. Commun. 12, 5933 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou, J., Lancaster, L., Donohue, J. P. & Noller, H. F. How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation. Science 345, 1188–1191 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou, J., Lancaster, L., Donohue, J. P. & Noller, H. F. Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation. Science 340, 1236086 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ramrath, D. J. et al. Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation. Proc. Natl Acad. Sci. USA 110, 20964–20969 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Melnikov, S. et al. One core, two shells: bacterial and eukaryotic ribosomes. Nat. Struct. Mol. Biol. 19, 560–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Budkevich, T. V. et al. Regulation of the mammalian elongation cycle by subunit rolling: a eukaryotic-specific ribosome rearrangement. Cell 158, 121–131 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dever, T. E., Dinman, J. D. & Green, R. Translation elongation and recoding in eukaryotes. Cold Spring Harb. Perspect. Biol. 10, a032649 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Iglewski, B. H. & Kabat, D. NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc. Natl Acad. Sci. USA 72, 2284–2288 (1975).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, H. & Iglewski, W. J. Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A. Proc. Natl Acad. Sci. USA 81, 2703–2707 (1984).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arguelles, S., Camandola, S., Cutler, R. G., Ayala, A. & Mattson, M. P. Elongation factor 2 diphthamide is critical for translation of two IRES-dependent protein targets, XIAP and FGF2, under oxidative stress conditions. Free Radic. Biol. Med. 67, 131–138 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Hawer, H. et al. Diphthamide-deficiency syndrome: a novel human developmental disorder and ribosomopathy. Eur. J. Hum. Genet. 28, 1497–1508 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shankar, S. P. et al. A novel DPH5-related diphthamide-deficiency syndrome causing embryonic lethality or profound neurodevelopmental disorder. Genet. Med. 24, 1567–1582 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stahl, S. et al. Loss of diphthamide pre-activates NF-kappaB and death receptor pathways and renders MCF7 cells hypersensitive to tumor necrosis factor. Proc. Natl Acad. Sci. USA 112, 10732–10737 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, J., Tsai, A., O’Leary, S. E., Petrov, A. & Puglisi, J. D. Unraveling the dynamics of ribosome translocation. Curr. Opin. Struct. Biol. 22, 804–814 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Justice, M. C. et al. Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J. Biol. Chem. 273, 3148–3151 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Munro, J. B., Altman, R. B., O’Connor, N. & Blanchard, S. C. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell 25, 505–517 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Budkevich, T. et al. Structure and dynamics of the mammalian ribosomal pretranslocation complex. Mol. Cell 44, 214–224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rexroad, G., Donohue, J. P., Lancaster, L. & Noller, H. F. The role of GTP hydrolysis by EF-G in ribosomal translocation. Proc. Natl Acad. Sci. USA 119, e2212502119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Inoue-Yokosawa, N., Ishikawa, C. & Kaziro, Y. The role of guanosine triphosphate in translocation reaction catalyzed by elongation factor G. J. Biol. Chem. 249, 4321–4323 (1974).

    Article  CAS  PubMed  Google Scholar 

  27. Kaziro, Y. The role of guanosine 5′-triphosphate in polypeptide chain elongation. Biochim. Biophys. Acta 505, 95–127 (1978).

    Article  CAS  PubMed  Google Scholar 

  28. Cornish, P. V., Ermolenko, D. N., Noller, H. F. & Ha, T. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30, 578–588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hekman, K. E. et al. A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult. Hum. Mol. Genet. 21, 5472–5483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khade, P. K. & Joseph, S. Messenger RNA interactions in the decoding center control the rate of translocation. Nat. Struct. Mol. Biol. 18, 1300–1302 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Demeshkina, N., Jenner, L., Westhof, E., Yusupov, M. & Yusupova, G. A new understanding of the decoding principle on the ribosome. Nature 484, 256–259 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Zaher, H. S. & Green, R. Fidelity at the molecular level: lessons from protein synthesis. Cell 136, 746–762 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jenner, L. B., Demeshkina, N., Yusupova, G. & Yusupov, M. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 17, 555–560 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Meyer, B. et al. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Psi1191 in yeast 18S rRNA. Nucleic Acids Res. 39, 1526–1537 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334, 1524–1529 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Ben-Shem, A., Jenner, L., Yusupova, G. & Yusupov, M. Crystal structure of the eukaryotic ribosome. Science 330, 1203–1209 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Babaian, A. et al. Loss of m(1)acp(3)Psi ribosomal RNA modification is a major feature of cancer. Cell Rep. 31, 107611 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Stuart, J. W., Koshlap, K. M., Guenther, R. & Agris, P. F. Naturally-occurring modification restricts the anticodon domain conformational space of tRNA(Phe). J. Mol. Biol. 334, 901–918 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Carlson, B. A. et al. Transfer RNA modification status influences retroviral ribosomal frameshifting. Virology 255, 2–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Rossello-Tortella, M. et al. Epigenetic loss of the transfer RNA-modifying enzyme TYW2 induces ribosome frameshifts in colon cancer. Proc. Natl Acad. Sci. USA 117, 20785–20793 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jorgensen, R. et al. Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase. Nat. Struct. Biol. 10, 379–385 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Murray, J. et al. Structural characterization of ribosome recruitment and translocation by type IV IRES. eLife 5, e13567 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wieland, M. et al. The cyclic octapeptide antibiotic argyrin B inhibits translation by trapping EF-G on the ribosome during translocation. Proc. Natl Acad. Sci. USA 119, e2114214119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pestka, S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 3. The formation of peptide bonds by ribosomes in the absence of supernatant enzymes. J. Biol. Chem. 243, 2810–2820 (1968).

    Article  CAS  PubMed  Google Scholar 

  45. Yusupova, G. Z., Belitsina, N. V. & Spirin, A. S. Template-free ribosomal synthesis of polypeptides from aminoacyl-tRNA. Polyphenylalanine synthesis from phenylalanyl-tRNALys. FEBS Lett. 206, 142–146 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. Pellegrino, S. et al. Structural insights into the role of diphthamide on elongation factor 2 in mRNA reading-frame maintenance. J. Mol. Biol. 430, 2677–2687 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Jorgensen, R., Carr-Schmid, A., Ortiz, P. A., Kinzy, T. G. & Andersen, G. R. Purification and crystallization of the yeast elongation factor eEF2. Acta Crystallogr. D Biol. Crystallogr. 58, 712–715 (2002).

    Article  ADS  PubMed  Google Scholar 

  48. Fraser, T. H. & Rich, A. Synthesis and aminoacylation of 3′-amino-3′-deoxy transfer RNA and its activity in ribosomal protein synthesis. Proc. Natl Acad. Sci. USA 70, 2671–2675 (1973).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Spirin, A. S., Belitsina, N. V. & Yusupova, G. Z. Ribosomal synthesis of polypeptides from aminoacyl-tRNA without polynucleotide template. Methods Enzymol. 164, 631–649 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Mesters, J. R., Vorstenbosch, E. L. H., Deboer, A. J. & Kraal, B. Complete purification of transfer-RNA, charged or modified with hydrophobic groups, by reversed-phase high-performance liquid-chromatography on a C-4 C-18 column system. J. Chromatogr. A 679, 93–98 (1994).

    Article  CAS  Google Scholar 

  51. Mechulam, Y., Guillon, L., Yatime, L., Blanquet, S. & Schmitt, E. Protection-based assays to measure aminoacyl-tRNA binding to translation initiation factors. Methods Enzymol. 430, 265–281 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Terwilliger, T. C. et al. Improved crystallographic models through iterated local density-guided model deformation and reciprocal-space refinement. Acta Crystallogr. D Biol. Crystallogr. 68, 861–870 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic ligand builder and optimization workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D Biol. Crystallogr. 65, 1074–1080 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff of the Dubochet Center for Imaging (DCI-Lausanne) for cryo-imaging and preliminary data analysis. We thank Y. Polikanov from the University of Illinois at Chicago for providing the plasmid for the over-expression of the CCA-adding enzyme. We also thank C. Crucifix from the IGBMC cryo-EM platform for her expertise in grid preparation. This work was supported by La Fondation pour la Recherche Médicale grant no. DEQ20181039600 (to M.Y.).

Author information

Authors and Affiliations

Authors

Contributions

M.Y. and G.Y. conceived the project, N.M. conducted all biochemical experiments, and N.M and A.M. collected cryo-EM data. Main data analysis was performed by N.M. L.J. and A.M. also contributed to the data analysis. N.M. prepared the manuscript. G.Y. reviewed and edited the manuscript. G.Y. supervised the project. All authors gave their input in the preparation of the final manuscript.

Corresponding author

Correspondence to Gulnara Yusupova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Large-scale conformational changes of the small ribosomal subunit.

Intersubunit view of the full SSU (left grid) and a zoomed top view of the SSU head domain (right grid) for each solved translocation complex. SSU is coloured on the basis of root-mean-square deviation values of atomic positions relative to the non-rotated (NR) state by 25 S alignment. White arrows indicate shoulder domain closure (upwards) or opening (downwards). Dark grey arrows indicate small subunit rotation (clockwise) or back-rotation (anti-clockwise) around the rotation axes shown in black. Light grey arrows indicate forward tilting or swiveling motions around the axes shown in light gray. All angles are calculated relative to the NR state.

Extended Data Fig. 2 Progressive anticodon advancement in chimeric states of translocation.

Positions of peptidyl- (green) and deacyl-tRNA (yellow) anticodons in chimeric states of translocation TI-2 to TI-5 relative to final positions observed in the NR state (white) and the early chimeric ap0/P-pe0/E state (PDB ID 7OSM). Individually displayed anticodon nucleotides (top to bottom in the 3′ – 5′ direction) reveal distinct SSU sub-chimeric states: ap1-pe1 (in TI-2 and TI-3) and ap2-pe2 (in TI-4 and TI-5).

Extended Data Fig. 3 Nucleotide-binding pockets of eEF2 in translocation intermediates from TI-1 to TI-5.

Unfiltered, unsharpened maps (σ = 3) of the nucleotide-binding pocket found in domain I of eEF2 (red). TI-1 and TI-3 show density for the non-hydrolysable analogue of GTP (GMPPCP) and switch loop 1 (sw1). GDP-containing TI-2, TI-4 and TI-5 show no density for sw1. Additional density corresponding to inorganic phosphate was identified in TI-4.

Extended Data Fig. 4 eEF2 interactions with the eukaryotic 80 S ribosome.

a, Contacts of eEF2 domains (I in green, II in magenta, III in pink, IV in red, and V in blue) with ribosomal elements of large 60 S (RNA in light grey and proteins in dark grey) and small 40 S subunit (RNA in light blue and proteins in dark blue) in translocation intermediate complexes TI-1 to TI-5. Sordarin is depicted in orange. b-d, Quantification of contact areas of eEF2 domains I to V with 80 S, in b, large 60 S subunit, in c, and small 40 S subunit, in d. Eukaryote-specific interactions between eEF2 and SSU proteins eS6 and eS24 during factor recruitment in early translocation (TI-1), and eS30 once eEF2 is fully accommodated on 80 S (TI-2 to TI-5). Black arrows indicate areas of eukaryote-specific contacts.

Extended Data Fig. 5 Conformational adaptations of eEF2 and contact areas with the tRNA2-mRNA translocating module.

a, Alignment on 25 S (left) and global eEF2 alignment (right) on eEF2 in TI-5 for GMPPCP bound intermediates TI-1 and TI-3, and GDP-containing intermediates TI-2, TI-4 and TI-5. Atoms are colored on the basis of root-mean-square deviation values of atomic positions relative to TI-5. b, Buried surface measurements corresponding to contacts of the tRNA2-mRNA module with 80 S ribosome (pink) and domain IV of eEF2 (red) in the course of elongation from PRE-H1 to TI-5. c, Unfiltered, unsharpened density of S. cerevisiae eEF2 (e.g. TI-4) contoured at σ = 3.

Extended Data Fig. 6 mRNA path on the small subunit of the eukaryotic 80 S ribosome.

a, Lateral view of the full 40 S small subunit (SSU) of the eukaryotic 80 S ribosome trapped in the PRE-hybrid-1 reconstruction (PRE-H1) reveals the path of messenger RNA (magenta) at the SSU head-body domain interface. Unsharpened, unfiltered high-resolution cryo-EM maps are shown at σ = 3.5. 18 S ribosomal RNA and SSU proteins are colored in light and dark blue, respectively. b, Zoom on the thirteen nucleotide-long messenger RNA and interacting residues of 18 S rRNA and the conserved SSU protein uS12. +1 indicates the first nucleotide of the start codon. c, Close-up view of the interactions between messenger RNA and ribosomal SSU elements in the PRE-H1 complex. π-π stacking is found between −1 and G1150, while the p-π effect is observed in the following interacting pairs: −3 and G904, and +3 and C1637.

Extended Data Fig. 7 Effect of sordarin binding to eEF2 in the context of eukaryotic translocation.

a-c, Global alignments reflecting general conservation of overall eEF2 conformation during early, in a, and late states of translocation, in b and c. d-f, Domain III alignment shows displacement of eEF2 domain V towards the interface with domain III. g-I, Zoom on the sordardin binding site for respective structural superimpositions on eEF2 domain III, as shown in d-f. The arrow indicates the displacement of domain V relative to domain III. Remodelling of the switch loop 2 (sw2) has not been observed. Structural alignments are performed for late translocation states before, in b, e and h, and after GTP hydrolysis, in c, f and i. eEF2 domains are colored as follows: domain I in green, domain II in magenta, domain III in pink, domain IV in red, and domain V in blue. Unfiltered, unsharpened of sordarin is shown at σ = 4 and depicted in orange. Lighter nuances correspond to structures without sordardin, TI-1* and TI-4*. j, Chemical structure of sordarin.

Extended Data Fig. 8 Interactions of eEF2 with small subunit proteins uS12 and eS30.

a, Inter-domain remodeling of eEF2 and conformational changes of SSU proteins uS12 and eS30 accompanying SSU back-rotation during respective transitions between translocation intermediates TI-1 to TI-5. b, Curves depicting contacts between SSU proteins uS12 with eEF2 domains II (dark yellow) and III (orange), and eS30 with domain IV (blue).

Extended Data Table. 1 Grid preparation, data collection and model validation parameters for NR, PRE-H1, TI-2, TI-4 and TI-5 complexes
Extended Data Table. 2 Grid preparation, data collection and model validation parameters for TI-1, TI-3, PRE-H2, TI-1* and TI-4* complexes

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs 1 and 2.

Reporting Summary

Supplementary Video 1

Conformational changes of the eukaryotic ribosome during tRNA translocation. The video recapitulates mRNA–tRNA progression through the ribosome starting from pretranslocation hybrid intermediates (PRE-H1 to PRE-H2), eEF2 recruitment (TI-1) and accommodation (TI-2). The complex then undergoes sequential transitions from TI-2 to TI-5, resulting in the POST state. Peptidyl-tRNA in shown in green, deacyl-tRNA in violet, eEF2 in red, LSU (60S) is depicted in light blue, SSU (40S) head and body domains in light brown and orange, respectively.

Supplementary Video 2

eEF2-assisted advancement of tRNAs during translocation on the eukaryotic ribosome. Morphing of unfiltered, unsharpened cryo-EM maps reveals structural dynamics of the mRNA–tRNA2 module advancement during translocation. The sequence reflects progressive transitions between hybrid (PRE-H1, PRE-H2 and TI-1) and chimeric states (TI-2 to TI-5), yielding the classical POST state. Peptidyl-tRNA is shown in green, deacyl-tRNA in yellow, eEF2 in red and mRNA in magenta.

Supplementary Video 3

Accuracy of ribosomal translocation in eukaryotes: opening of the decoding centre and role of diphthamide. The video shows an intricated network of interactions on the atomic level, which maintains the mRNA translational reading frame during translocation. It also shows the locked conformation of the eukaryotic decoding centre, which undergoes unlocking as domain IV protrudes into the A-site following the accommodation of eEF2 on the ribosome. Peptidyl-tRNAPhe (green), deacyl-tRNAfMet (violet), mRNA (magenta), SSU (light brown), uS12 (orange), potassium ion (dark violet) and eEF2 (red). PDB ID 7OSM corresponds to the crystal structure of the early intermediate translocation complex.

Supplementary Video 4

Role of elongation factor 2 (eEF2) during eukaryotic ribosome translocation. Interface view of the SSU (40S) illustrates SSU rotation and head domain swivelling during mRNA–tRNA2 translocation. Progressive advancement of ASLs of peptidyl-tRNA (green) and deacyl-tRNA (violet) is shown from early hybrid to late chimeric states of translocation as the ligands proceed to their classical positions in the POST state. eEF2 contributes to translocation most probably by preventing reverse rotation of the SSU head domain, acting as a molecular doorstop. The head of SSU (40S) is shown in orange, SSU body in light brown and eEF2 in red.

Supplementary Video 5

Role of the 1-methyl-3-α-amino-α-carboxyl-propyl pseudouridine 1,191 (m1acp3Ψ1191) hypermodification in eukaryotic ribosome translocation. The heavily modified uridine, found in the hairpin loop of the universally conserved helix 31 of 18S rRNA lies at the interface of SSU (40S) head and body domains. During translocation, m1acp3Ψ1191 acts by repetitively guiding tRNA from P to E site.

Supplementary Video 6

Maintenance of the translational reading frame during eukaryotic translocation. TI-4 is given as an example. Residues of SSU (40S) head and body domains, assisted by residues of eEF2 domain IV including diphthamide, form an extensive network of interactions with codon–anticodon duplexes and maintain the translational reading frame during translocation in eukaryotes. Peptidyl-tRNA is shown in green, deacyl-tRNA in violet, eEF2 in red, mRNA in magenta, residues of SSU head and body domains are depicted in light brown and orange, respectively, and uS9 is shown in dark blue.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milicevic, N., Jenner, L., Myasnikov, A. et al. mRNA reading frame maintenance during eukaryotic ribosome translocation. Nature 625, 393–400 (2024). https://doi.org/10.1038/s41586-023-06780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06780-4

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing