Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cholinergic neurons trigger epithelial Ca2+ currents to heal the gut

Abstract

A fundamental and unresolved question in regenerative biology is how tissues return to homeostasis after injury. Answering this question is essential for understanding the aetiology of chronic disorders such as inflammatory bowel diseases and cancer1. We used the Drosophila midgut2 to investigate this and discovered that during regeneration a subpopulation of cholinergic3 neurons triggers Ca2+ currents among intestinal epithelial cells, the enterocytes, to promote return to homeostasis. We found that downregulation of the conserved cholinergic enzyme acetylcholinesterase4 in the gut epithelium enables acetylcholine from specific Egr5 (TNF in mammals)-sensing cholinergic neurons to activate nicotinic receptors in innervated enterocytes. This activation triggers high Ca2+, which spreads in the epithelium through Innexin2–Innexin7 gap junctions6, promoting enterocyte maturation followed by reduction of proliferation and inflammation. Disrupting this process causes chronic injury consisting of ion imbalance, Yki (YAP in humans) activation7, cell death and increase of inflammatory cytokines reminiscent of inflammatory bowel diseases8. Altogether, the conserved cholinergic pathway facilitates epithelial Ca2+ currents that heal the intestinal epithelium. Our findings demonstrate nerve- and bioelectric9-dependent intestinal regeneration and advance our current understanding of how a tissue returns to homeostasis after injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ACh sensitivity is required for recovery.
Fig. 2: nAChRβ3 is required in ECs for recovery.
Fig. 3: nAChRβ3-mediated Ca2+ promotes recovery.
Fig. 4: ARCEN–EC interactions promote recovery.
Fig. 5: Ca2+ spreads via Inx2–Inx7 gap junctions.

Similar content being viewed by others

Data availability

Reagents are available upon request. The snRNA-seq datasets generated in this work are publicly available in the Gene Expression Omnibus (GEO) database under accession code GSE218641, snRNA-seq dataset of gut from OreR female flies during Homeostasis and Recovery. Single-nuclei profiling data from this study can be found at https://www.flyrnai.org/tools/rna_seq_base/web/showProject/39/plot_coord=1/sample_id=all, to allow users to query the expression of any gene of interest. Source data are provided with this paper. All other data are available in figures, Extended Data figures and Supplementary Information files.

Code availability

This study does not use any custom codes for analysis. snRNA-seq datasets were analysed using the standard Seurat pipeline.

References

  1. Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307–315 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miguel-Aliaga, I., Jasper, H. & Lemaitre, B. Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics 210, 357–396 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wessler, I. & Kirkpatrick, C. J. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br. J. Pharmacol. 154, 1558–1571 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wiesner, J., Kriz, Z., Kuca, K., Jun, D. & Koca, J. Acetylcholinesterases—the structural similarities and differences. J. Enzyme Inhib. Med. Chem. 22, 417–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Igaki, T. et al. Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J. 21, 3009–3018 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guiza, J., Barria, I., Saez, J. C. & Vega, J. L. Innexins: expression, regulation, and functions. Front. Physiol. 9, 1414 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Snigdha, K., Gangwani, K. S., Lapalikar, G. V., Singh, A. & Kango-Singh, M. Hippo signaling in cancer: lessons from Drosophila models. Front. Cell Dev. Biol. 7, 85 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Subramanian, S., Geng, H. & Tan, X. D. Cell death of intestinal epithelial cells in intestinal diseases. Sheng Li Xue Bao 72, 308–324 (2020).

    PubMed  PubMed Central  Google Scholar 

  9. Levin, M. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 184, 1971–1989 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Hirota, C. L. & McKay, D. M. Cholinergic regulation of epithelial ion transport in the mammalian intestine. Br. J. Pharmacol. 149, 463–479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goverse, G., Stakenborg, M. & Matteoli, G. The intestinal cholinergic anti-inflammatory pathway. J. Physiol. 594, 5771–5780 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Panayidou, S. & Apidianakis, Y. Regenerative inflammation: lessons from Drosophila intestinal epithelium in health and disease. Pathogens 2, 209–231 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Micchelli, C. A. & Perrimon, N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439, 475–479 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Ohlstein, B. & Spradling, A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439, 470–474 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Jiang, H., Tian, A. & Jiang, J. Intestinal stem cell response to injury: lessons from Drosophila. Cell. Mol. Life Sci. 73, 3337–3349 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo, Z., Driver, I. & Ohlstein, B. Injury-induced BMP signaling negatively regulates Drosophila midgut homeostasis. J. Cell Biol. 201, 945–961 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tracy Cai, X. et al. AWD regulates timed activation of BMP signaling in intestinal stem cells to maintain tissue homeostasis. Nat. Commun. 10, 2988 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Agaisse, H., Petersen, U. M., Boutros, M., Mathey-Prevot, B. & Perrimon, N. Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev. Cell 5, 441–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Buchon, N. et al. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep. 3, 1725–1738 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Tian, A., Wang, B. & Jiang, J. Injury-stimulated and self-restrained BMP signaling dynamically regulates stem cell pool size during Drosophila midgut regeneration. Proc. Natl Acad. Sci. USA 114, E2699–E2708 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Li, M., Sun, S., Priest, J., Bi, X. & Fan, Y. Characterization of TNF-induced cell death in Drosophila reveals caspase- and JNK-dependent necrosis and its role in tumor suppression. Cell Death Dis. 10, 613 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Karpowicz, P., Perez, J. & Perrimon, N. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137, 4135–4145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ren, F. et al. Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc. Natl Acad. Sci. USA 107, 21064–21069 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dolan, B., Ermund, A., Martinez-Abad, B., Johansson, M. E. V. & Hansson, G. C. Clearance of small intestinal crypts involves goblet cell mucus secretion by intracellular granule rupture and enterocyte ion transport. Sci. Signal. 15, eabl5848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Masuyama, K., Zhang, Y., Rao, Y. & Wang, J. W. Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J. Neurogenet. 26, 89–102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng, H., Gerencser, A. A. & Jasper, H. Signal integration by Ca2+ regulates intestinal stem-cell activity. Nature 528, 212–217 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, C., Luo, J., He, L., Montell, C. & Perrimon, N. Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca2+ signaling in the Drosophila midgut. eLife https://doi.org/10.7554/eLife.22441 (2017).

  29. Amcheslavsky, A. et al. Enteroendocrine cells support intestinal stem-cell-mediated homeostasis in Drosophila. Cell Rep. 9, 32–39 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar, A. & Brockes, J. P. Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci. 35, 691–699 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Lai, N. Y. et al. Gut-innervating nociceptor neurons regulate Peyer’s patch microfold cells and SFB levels to mediate Salmonella host defense. Cell 180, 33–49 e22 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Matheis, F. et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180, 64–78 e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han, H. et al. Gut-neuron interaction via Hh signaling regulates intestinal progenitor cell differentiation in Drosophila. Cell Discov. 1, 15006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kenmoku, H., Ishikawa, H., Ote, M., Kuraishi, T. & Kurata, S. A subset of neurons controls the permeability of the peritrophic matrix and midgut structure in Drosophila adults. J. Exp. Biol. 219, 2331–2339 (2016).

    PubMed  Google Scholar 

  35. Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2, 991–1001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, A. J., Fenk, L. M., Lyu, C. & Maimon, G. Quantitative predictions orchestrate visual signaling in Drosophila. Cell 168, 280–294 e212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tracey, K. J. Reflex control of immunity. Nat. Rev. Immunol. 9, 418–428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Babcock, D. T., Landry, C. & Galko, M. J. Cytokine signaling mediates UV-induced nociceptive sensitization in Drosophila larvae. Curr. Biol. 19, 799–806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andersen, D. S. et al. The Drosophila TNF receptor Grindelwald couples loss of cell polarity and neoplastic growth. Nature 522, 482–486 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Kanda, H., Igaki, T., Kanuka, H., Yagi, T. & Miura, M. Wengen, a member of the Drosophila tumor necrosis factor receptor superfamily, is required for Eiger signaling. J. Biol. Chem. 277, 28372–28375 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Doupe, D. P., Marshall, O. J., Dayton, H., Brand, A. H. & Perrimon, N. Drosophila intestinal stem and progenitor cells are major sources and regulators of homeostatic niche signals. Proc. Natl Acad. Sci. USA 115, 12218–12223 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harmansa, S., Alborelli, I., Bieli, D., Caussinus, E. & Affolter, M. A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. eLife https://doi.org/10.7554/eLife.22549 (2017).

  43. Heir, R. & Stellwagen, D. TNF-mediated homeostatic synaptic plasticity: from in vitro to in vivo models. Front. Cell. Neurosci. 14, 565841 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Petsakou, A., Sapsis, T. P. & Blau, J. Circadian rhythms in Rho1 activity regulate neuronal plasticity and network hierarchy. Cell 162, 823–835 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ariyapala, I. S. et al. Identification of Split-GAL4 drivers and enhancers that allow regional cell type manipulations of the Drosophila melanogaster intestine. Genetics 216, 891–903 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Petsakou, A. & Perrimon, N. Bioelectric regulation of intestinal stem cells. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2022.10.003 (2022).

  47. Harris, M. P. Bioelectric signaling as a unique regulator of development and regeneration. Development https://doi.org/10.1242/dev.180794 (2021).

  48. Ho, K. Y. L., Khadilkar, R. J., Carr, R. L. & Tanentzapf, G. A gap-junction-mediated, calcium-signaling network controls blood progenitor fate decisions in hematopoiesis. Curr. Biol. 31, 4697–4712 e4696 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Dajas-Bailador, F. A., Mogg, A. J. & Wonnacott, S. Intracellular Ca2+ signals evoked by stimulation of nicotinic acetylcholine receptors in SH-SY5Y cells: contribution of voltage-operated Ca2+ channels and Ca2+ stores. J. Neurochem. 81, 606–614 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, A. A. et al. Independently paced Ca2+ oscillations in progenitor and differentiated cells in an ex vivo epithelial organ. J. Cell Sci. https://doi.org/10.1242/jcs.260249 (2022).

Download references

Acknowledgements

We thank S. Mohr and J. Blau for comments on the manuscript. Confocal imaging was conducted at the MicRoN Facility at Harvard Medical School, and we thank P. Montero Llopis for advice. We thank the Cepko laboratory at Harvard Medical School for sharing their vibratome. We also thank M. Levin for discussions and H. Bellen, G. Tanentzapf, K. O’Connor-Giles, X. Yang, C. Potter, T. R. Laverty, G. Rubin, Janelia FlyLight, DSHB, DRSC/TRiP, VDRC and the Bloomington Stock Center for fly lines, antibodies and reagents. We thank F. Wirtz-Peitz, S. G. Tattikota, R. Binari and H. Li for help in this project, and P. Jouandin, P. Saavedra, L. Lane, D. Doupé, J. Bosch, B. Ewen-Campen, L. Liu, C. Xu, M. R. Riddle and T. Huycke for advice and reagents. We thank C. Villalta and Bestgene for fly injections, H. Elliot and M. Cicconet at the Image and Data Analysis Facility (IDAC), and S. Norrelykke at the Image Analysis Collaboratory (IAC) at Harvard Medical School for advice on Imaris; S. Alon for advice on expansion microscopy; and the Biopolymers Facility and Computing facilities and PCMM Flow Cytometry Facility at Harvard Medical School. All illustrations were created using BioRender.com and publication licences have been obtained. During this study, A.P. was a Good Ventures fellow of the Life Science Research Foundation and next was supported by the Center for the Study of Inflammatory Bowel Disease (grant no. DK043351). N.P. is an investigator of the Howard Hughes Medical Institute. Y.H., Yifang Liu and A.C. were supported by grant no. P41GM132087 and grant no. BBSRC-NSF/BIO (grant no. DBI-2035515). Ying Liu was supported by the Finnish Cultural Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.P. and N.P. conceptualized the project. A.P. was responsible for the methods, data acquisition, resources, visualization and imaging. A.P. was responsible for the independent replication of experiments at Harvard Medical School. Ying Liu and A.P. performed the FACS analyses. Yifang Liu, Y.H., A.C. and A.P. analysed the single-nuclei data. A.P. wrote the original draft of the manuscript. A.P. and N.P. reviewed, edited and revised the manuscript.

Corresponding authors

Correspondence to Afroditi Petsakou or Norbert Perrimon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Ace is downregulated during recovery.

a, Expression levels of conserved inflammatory cytokines (unpaired-3/upd-3 and eiger/egr) in guts of Ore R flies undergoing DSS-induced repair. Normalized to Homeostasis. n = 3 biologically independent samples per condition. Tukey’s one-way Anova: p = 0.0046 (upd3: Hom. vs Injury & Injury vs Rec. d4), p = 0.0061(upd3: Injury vs Rec. d2), p = 0.0096 (egr: Hom. vs Injury), p = 0.006 (Injury vs Rec. d4). b, Expression levels of markers for progenitor cells (PCs) (escargot, esg), ECs (pdm1), enteroendocrine cells (EEs) (prospero, pros) in guts of Ore R flies undergoing DSS-induced repair. Normalized to Homeostasis. Homeostasis: n = 3 (esg), n = 6 (pdm1), n = 5 (pros) biologically independent samples. Injury: n = 3 (esg), n = 6 (pdm1), n = 6 (pros) biologically independent samples. Rec. d2: n = 3 (esg), n = 7 (pdm1, pros) biologically independent samples. Rec. d4: n = 3 (esg), n = 4 (pdm1, pros) biologically independent samples. Tukey’s one-way Anova: p = 0.0393 (Hom. vs Injury, esg), p = 0.0112 (Injury vs Rec. d4, esg). Dunn’s Kruskal-Wallis test: p = 0.0384 (Hom. vs Injury, pdm1), p = 0.0227 (Injury vs Rec. 4, pdm1), p = 0.0157 (Injury vs Rec. d2, pros). c, Annotated gut cell type clusters of Ore R flies after snRNAseq, visualized with UMAP (n = total of 8073 nuclei). d, Graph depicting the number of gut nuclei recovered per cluster and per condition after snRNAseq of Ore R flies (n = total of 7411 nuclei in gut clusters). e, Dot plot per snRNAseq gut cluster illustrating the average expression (blue color range) and percent of expression (dot size) of marker genes for ECs (pdm1, myo1A, mex1), EEs (pros, piezo, AstA) and for PCs (esg, Notch, Sox21a) [PCs: ISC/enteroblast (EB) and proEC]. (n = total of 7411 gut nuclei). f, Heatmap of significantly upregulated and downregulated genes in EC clusters (S. Table 12) after snRNAseq (n = total of 4547 nuclei in EC clusters). Red arrow: Acetylcholinesterase (Ace). *: 0.05 > p > 0.01, **: 0.01 > p > 0.001. Data are presented as mean values ± SEM.

Source data

Extended Data Fig. 2 ACh sensitivity is required for recovery.

a, Violin plot illustrating the mean expression of Ace per condition in EC clusters after snRNAseq of Ore R flies (p = 0.0364). n = 4547 nuclei in EC clusters. Statistics: two-tailed negative binomial exact test, adjusted with Benjamini-Hochberg procedure. Violin plot: median, 1st and 3rd quartile. b, Graph depicting percentage of nuclei expressing Ace per snRNAseq gut cluster and condition (n = 7411 gut nuclei). c, Expression levels of Ace in Ore R guts after 18 h of Ecc15 bacterial infection (yellow) or 2 days after Bleomycin-injury (pink) compared to unchallenged guts (5% sucrose: grey, homeostasis: light grey). n = 3 biologically independent samples per condition. two-tailed t-test: p = 0.0179 (Suc. vs Ecc15), p = 0.0121 (Hom. vs Bleo). d, Validation of ACE overexpression using CRISPR-OE. n = 3 biologically independent samples per genotype. two-tailed t-test: p = 0.0461. e, Mitotic division counts of proliferating ISCs with anti-pH3 from midgut of control (mexTS > dCas9VPR) and flies with conditional Ace overexpression (mexTS > dCas9VPR, gRNA-Ace) in ECs during Recovery 2x (like Fig. 1f). n = 11 guts per genotype examined over 2 independent experiments. two tailed Mann-Whitney test: p = 0.0001. f, pH3+ counts from midgut of control (howTS > dCas9VPR, hmlTS > dCas9VPR) and flies with conditional Ace overexpression in the visceral muscle (howTS > dCas9VPR, gRNA-Ace) and in hemocytes (immune cells, hmlTS > dCas9VPR, gRNA-Ace). Conditions as Fig. 1e. Two-way Anova. howTS>dCas9VPR: n = 15(Hom, Rec.d4), n = 12(Injury) guts; howTS>dCas9VPR,gRNA-Ace: n = 15(Hom, Rec.d4), n = 13 (Injury) guts; hmlTS > dCas9VPR: n = 13(Hom.), n = 12(Injury), n = 10(Rec. d4) guts, hmlTS>dCas9VPR,gRNA-Ace: n = 14(Hom.), n = 12 (Injury), n = 11(Rec. d4) guts, examined over 3 independent experiments. g, pH3+ counts from midgut of control (myo1ATS> dCas9VPR, mexTS > dCas9VPR) and flies with conditional Ace overexpression (myo1ATS> dCas9VPR, gRNA-Ace and mexTS > dCas9VPR, gRNA-Ace) in ECs after 18hrs of 5% sucrose feeding or 18 h of Ecc15 oral infection (29 °C). myo1ATS> dCas9VPR: n = 10(Suc.), n = 23 (Ecc15) guts; myo1ATS>dCas9VPR,gRNA-Ace: n = 11(Suc.), n = 24(Ecc15) guts; mexTS> dCas9VPR: n = 16(Suc.), n = 17(Ecc15) guts; mexTS>dCas9VPR, gRNA-Ace: n = 15(Suc.), n = 16 (Ecc15) guts, examined over 2 independent experiments. Tukey’s one-way Anova. h, pH3+ counts from mexTS > dCas9VPR and mexTS > dCas9VPR, gRNA-Ace guts during Homeostasis, 2 days feeding with Bleomycin (Bleo d2) and 2 days recovery after Bleomycin (Rec-Bleo d2) at 29 °C. mexTS> dCas9VPR: n = 15(Hom.), n = 17(Bleo.), n = 32 (Rec.) guts; mexTS>dCas9VPR, gRNA-Ace: n = 16(Hom.), n = 17 (Bleo.), n = 29 (Rec.) guts, examined over 3 independent experiments. Tukey’s one-way Anova. i, Relative fluorescence intensity (ΔF/F0) per frame (5 s per frame) and per genotype of individual guts as described in Fig. 1g. *: 0.05>p > 0.01, ***: p < 0.001. Data are presented as mean values ± SEM.

Source data

Extended Data Fig. 3 nAChRβ3 is required in ECs for recovery.

a, nAcRβ3RNAi validation. n = 6 (control), n = 3 (nAChRβ3RNAi, nAChRβ3RNAi-2) biologically independent samples. Statistics: Dunnett’s one-way Anova. b, pH3+ counts from control (myo1ATS>+) guts and when nAChRβ3 is reduced in ECs (myo1ATS>nAChRβ3RNAi-2). Recovery d7: 7 days standard food (29 °C) after 4 days DSS-feeding (23 °C). Homeostasis d7: 7 days standard food (29 °C). p = 0.0496 (Dunn’s Kruskal-Wallis test). myo1ATS>+: n = 23(Hom.), n = 20(Rec. d7) guts; myo1ATS>nAChRβ3RNAi-2: n = 23(Hom.), n = 17(Rec. d7) guts, examined over 3 independent experiments. c, pH3+ counts from mexTS>+ and mexTS>nAChRβ3RNAi guts. Recovery d14: 14 days standard food (29 °C) after 4 days of DSS-feeding (23 °C). Homeostasis d14: 14 days standard food (29 °C). p = 0.0007(Kruskal-Wallis test). mexTS>+ : n = 16(Hom.), n = 20(Rec. d14) guts; mexTS>nAChRβ3RNAi: n = 16(Hom.), n = 19(Rec. d14) examined over 3 independent experiments. d, pH3+ counts from myo1ATS>+ and myo1ATS >nAChRβ3RNAi guts after Ecc15 oral infection and after 5% sucrose feeding. Conditions like Extended Data Fig. 2g. p = 0.0099 (Dunn’s Kruskal-Wallis test). myo1ATS>+ : n = 17 (Suc.), n = 19 (Ecc15) guts; myo1ATS >nAChRβ3RNAi n = 15 (Suc.), n = 26 (Ecc15) guts examined over 3 independent experiments. e, Representative color-coded sequential frames before (fr20) and after (fr200) ACh administration from control (mexTS > GCAM7c) and mexTS > GCAM7c +nAChRβ3RNAi midguts (as Fig. 1g). scale bar: 25 μm. Accompanying graph: average relative fluorescence intensity (ΔF/F0) per frame (5 s per frame) and per genotype. n = 4 (control), n = 5 (nAChRβ3RNAi) guts examined over 2 independent experiments (two-way Anova). Individual ΔF/F0 per gut on Extended Data Fig. 3j. f, pH3+ counts from control and when reducing nAcRβ3 in progenitor cells (PCs) (esgTS>nAChRβ3RNAi), enteroblasts (EBs) (su(H)GBETS>nAChRβ3RNAi), enteroendocrine cells (EEs) (prosTS> nAChRβ3RNAi), visceral muscle (howTS > nAChRβ3RNAi) and hemocytes (hmlTS> nAChRβ3RNAi). Conditions as Fig. 1e. Statistics: Sidak’s two-way Anova. esgTS>+ : n = 16 (Hom., Injury) n = 17 (Rec.) guts; esgTS>nAChRβ3RNAi: n = 14(Hom.), n = 20(Injury), n = 18(Rec) guts, over 2 independent experiments. Su(H)GBETS>+ : n = 16(Hom.), n = 15 (Injury), n = 13 (Rec.) guts; Su(H)GBETS>nAChRβ3RNAi: n = 11(Hom., Injury), n = 15(Rec) guts examined over 2 independent experiments. prosTS>+ : n = 10 (Hom.), n = 15(Injury), n = 12(Rec.) guts; prosTS>nAChRβ3RNAi: n = 10(Hom.), n = 9(Injury), n = 13(Rec) guts examined over 2 independent experiments. howTS>+ : n = 20(Hom.), n = 13(Injury), n = 16(Rec.) guts; howTS>nAChRβ3RNAi: n = 19(Hom.), n = 13(Injury), n = 16(Rec) guts examined over 2 independent experiments. hmlTS>+ : n = 12(Hom.), n = 13(Injury), n = 14(Rec.) guts; hmlTS>nAChRβ3RNAi: n = 12(Hom.), n = 14(Injury), n = 13(Rec) guts examined over 2 independent experiments. g, Graph depicting percentage of nuclei expressing nAChRβ3 per snRNAseq gut cluster (n = 7411 gut nuclei). h, nAChRβ3-flag validation: Midgut expressing nAChRβ3-flag (mexTS> +/nAChRβ3-flag) and when knocking down nAChRβ3 in ECs (mexTS>nAChRβ3RNAi/nAChRβ3-flag). anti-Flag: nAChRβ3-flag (yellow). DAPI: nuclei (blue). Images are representative of 2 independent experiments with similar results. scale bar: 25 μm. i, nAChRβ3 expression levels in Ore R guts. Tukey’s one-way Anova: p = 0.0104(Hom. vs Rec. d1), p = 0.0085(Rec. d1 vs Rec. d8). n = 6 (Hom.), n = 3(Rec. d1, Rec. d8) biologically independent samples. j-k, Relative fluorescence intensity (ΔF/F0) per frame (5 s per frame) and genotype of each gut as described in Extended Data Fig. 3e and Fig. 2g, respectively. *: 0.05> p > 0.01, **: 0.01 < p < 0.001, ***: p < 0.001. Data are presented as mean values ± SEM.

Source data

Extended Data Fig. 4 nAChRβ3 promotes EC maturation.

a, Representative image of posterior midgut from control (mexTS>+/Egr-GFP) flies and when nAChRβ3 is reduced in ECs (mexTS>nAChRβ3RNAi/ Egr-GFP) together with the protein trap Egr-GFP (anti-GFP, green). Accompanying graph: fluorescence fold change per image. n = 10 (control), n = 9 (nAChRβ3RNAi) guts examined over 2 independent experiments. Statistics: two-tailed Mann-Whitney test, p = 0.0057. Conditions as Fig. 1e. scale bar: 50 μm. b, Representative images of posterior midguts from control (mexTS>+/Vn-LacZ) and when nAChRβ3 is reduced in ECs (mexTS> nAChRβ3RNAi/Vn-LacZ) together with the Vn-LacZ reporter (anti-β-gal, white). Accompanying graph: fluorescence fold change per image. n = 10 (control), n = 9 (nAChRβ3RNAi) guts examined over 2 independent experiments. Conditions as Fig. 1e. Statistics: two-tailed t-test, p = 0.0279. scale bar: 50 μm. c, Representative images of posterior midguts from myo1ATS>+ and myo1ATS> nAChRβ3RNAi flies stained with anti-Dcp1: cell death (pink). Conditions as Fig. 1e. Accompanying graph: Dcp1+ cells per image. n = 8 (control), n = 11 (nAChRβ3RNAi) guts examined over 2 independent experiments. Statistics: two-tailed Mann-Whitney test. scale bar: 50 μm. d, Representative images of posterior midguts from control (myo1ATS>+/Diap1-LacZ) and when knocking down nAChRβ3 in ECs (myo1ATS> nAChRβ3RNAi/Diap1-LacZ) together with Diap1-LacZ (Yki target gene, anti-β-gal: white). Conditions as Fig. 1e. Accompanying graph: fluorescence fold change per image. n = 7 (control), n = 8 (nAChRβ3RNAi) guts examined over 2 independent experiments. Statistics: two-tailed t-test. scale bar: 50 μm. e, Representative images of posterior midgut from control (myo1ATS>+/Ex-LacZ) and when nAChRβ3 is reduced in ECs (myo1ATS> nAChRβ3RNAi/Ex-LacZ) together with Ex-LacZ (Yki target gene, anti-β-gal: white). Conditions as Fig. 1e. Boxplot: fluorescence fold change per image (median, 1st and 3rd quartile, whiskers: minimum maximum values). n = 11 guts per genotype examined over 2 independent experiments. Statistics: two-tailed Mann-Whitney test, p = 0.0014. scale bar: 50 μm. f-g, Representative images from posterior midgut of mexTS>+ and mexTS> nAChRβ3RNAi flies stained with anti-pdm1: EC (yellow). Conditions as Fig. 1e. Boxplot: pdm1+ cells over total nuclei per image (median, 1st and 3rd quartile, whiskers: minimum maximum values). n = 15 (control), n = 18 (nAChRβ3RNAi) guts examined over 3 independent experiments. Statistics: two-tailed t-test. scale bars: 50 μm(f), 100 μm(g). h, Pros expression levels. n = 3 biologically independent samples per genotype. Statistics: two-tailed t-test. i, Representative images of posterior midgut assayed with MQAE dye (intracellular Cl- via diffusion-limited collisional quenching, yellow) and SodiumGreen dye (intracellular Na+, green) from control myo1ATS>+ and myo1ATS>nAChRβ3RNAi flies. PI: nuclei (Propidium Iodide, red). See Methods for conditions. Accompanying graphs: fluorescence fold change per image. n = 9 (control/MQAE), n = 7 (nAChRβ3RNAi/MQAE) guts, n = 7 (SodiumGreen per genotype) guts examined over 2 independent experiments per dye. Statistics: p = 0.0115 (two tailed Mann-Whitney test/ MQAE), p = 0.0103 (two-tailed t-test/SodiumGreen). scale bar: 20 μm. j, Representative images from posterior midgut with progenitor cells expressing NFAT-CaLexA (esgTS>NFAT-CaLexA). anti-GFP: Ca2+ (green). NFAT-CaLexA was expressed for 2 days (29 °C) per condition. Accompanying graph: fluorescence fold change per image. n = 8 (Hom., Injury), n = 10 (Rec. d2) guts examined over 2 independent experiments (Tukey’s one-way Anova). scale bar: 50 μm. *: 0.05 > p > 0.01, **: 0.01 < p < 0.001, ***: p < 0.001. n.s.: non-significant. Data are presented as mean values ± SEM.

Source data

Extended Data Fig. 5 nAChRβ3-mediated Ca2 promotes recovery.

a, pH3+ counts of control (mexTS>+), guts with Orai (Ca2+ channel) overexpressed in ECs (mexTS>Orai), nAChRβ3 reduced in ECs (mexTS>nAChRβ3RNAi-2) and combined (mexATS>nAChRβ3RNAi-2+ Orai) during Recovery d4 (as Fig. 1e). n = 15 (mexTS>+), n = 19 (mexTS>nAChRβ3RNAi-2), n = 16 (mexTS>Orai), n = 11(mexATS>nAChRβ3RNAi-2+ Orai) guts examined over 2 independent experiments. Statistics: Dunn’s Kruskal-Wallis test, p = 0.013 (nAChRβ3RNAi-2 vs nAChRβ3RNAi-2+ Orai). b, Representative images of posterior midgut of flies as in Extended Data Fig. 5a. anti-pdm1: ECs (grey). Boxplot: pdm1+ cells over total nuclei per image (median, 1st and 3rd quartile, whiskers: minimum maximum values). n = 10 (control), n = 9 (nAChRβ3RNAi-2, Orai nAChRβ3RNAi-2+ Orai guts) guts examined over 2 independent experiments. Statistics: Tukey’s one-way Anova, p = 0.0048 (nAChRβ3RNAi-2 vs Orai), p = 0.0144 (nAChRβ3RNAi-2 vs nAChRβ3RNAi-2+ Orai). scale bar: 25 μm. c, Representative images of posterior midguts assayed with MQAE (like Extended Data Fig. 4i) of myo1ATS>+, myo1ATS>Orai, myo1ATS>nAChRβ3RNAi-2 and myo1ATS>nAChRβ3RNAi-2 + Orai flies. Accompanying graph: fluorescence fold change per image. n = 6 (myo1ATS>+), n = 6 (myo1ATS>nAChRβ3RNAi-2), n = 7(myo1ATS>Orai), n = 7 (myo1ATS>nAChRβ3RNAi-2 +Orai) guts examined over 2 independent experiments. Statistics: Tukey’s one-way Anova, p = 0.0002 (control vs nAChRβ3RNAi-2), p = 0.0084 (Orai vs nAChRβ3RNAi-2), p = 0.0441 (nAChRβ3RNAi-2 vs Orai + nAChRβ3RNAi-2). scale bar: 25 μm. d, pH3+ counts from control (mexTS>+) and flies overexpressing parvalbumin in ECs (mexTS>PV). Conditions as Fig. 1e. Control: n = 14 (Hom.), n = 37 (Rec.d4) guts, mexTS>PV: n = 17 (Hom.), n = 30 (Rec.d4) guts examined over 3 independent experiments. Statistics: Dunn’s Kruskal-Wallis test. e, Validation of UAS-nAcRβ3. n = 6 (control), n = 3 (myo1ATS> nAcRβ3) biologically independent samples. Statistics: two-tailed Mann-Whitney test, p = 0.0357. f, Validation of a’: mexLexA (mexLexA::GAD), scale bar: 200 μm. Image is representative of 2 independent experiments with similar results; b’: LexAopnAChRβ3. n = 3 biologically independent samples per genotype. Statistics: two-tailed t-test, p = 0.0012. g, a’: Representative color-coded sequential frames of mexTS>GCAM7c and mexTS>GCAM7c+nAChRβ3 guts before (t15) and after (t150) nicotine administration. b’: average relative fluorescence intensity (ΔF/F0) per frame (5 s per frame) and genotype. Conditions: 2 days standard food (29 °C). N = 6 guts per genotype examined over 2 independent experiments. c’: relative fluorescence intensity of each gut. Statistics: two-way Anova. scale bar: 25 μm. h, Representative images of posterior midguts from control (mexLexATS>+/upd3>GFP) and when nAChRβ3 is overexpressed in ECs (mexLexATS> LexAopnAChRβ3 /upd3>GFP) together with upd3-Gal4 driving UAS-GFP (anti-GFP, white). Conditions as Fig. 3g. Accompanying graph: fluorescence fold change per image. n = 8 (control), n = 9 (mexLexATS> LexAopnAChRβ3) guts examined over 2 independent experiments. Statistics: two-tailed Mann-Whitney test, p = 0.0002. scale bar: 100 μm. i, Representative images of posterior midguts from mexLexATS>+/Egr-GFP and mexLexATS>LexAopnAChRβ3/Egr-GFP flies (anti-GFP, green). Conditions as Fig. 3g. Accompanying graph: fluorescence fold change per image. n = 9 guts per genotype examined over 2 independent experiments. Statistics: two-tailed t-test, p = 0.0006. scale bar: 25 μm. j, Representative images of posterior midguts from control (mexTS>+) and mexTS>nAChRβ3 flies stained with anti-Dcp1(pink). Conditions like Fig. 3g. Accompanying graph: Dcp1+ cells per image. n = 9 (control), n = 13 (mexTS>nAChRβ3) guts per genotype examined over 2 independent experiments. Statistics: two-tailed Mann-Whitney test, p = 0.0064. scale bar: 100 μm. DAPI: nuclei (blue). PI: nuclei (Propidium iodide, red). *: 0.05>p > 0.01, **: 0.01<p < 0.001, ***: p < 0.001. Data are presented as mean values ± SEM.

Source data

Extended Data Fig. 6 R49E06-neurons innervate the gut.

a, pH3+ counts from control and from flies with conditional reduction of ChAT (Choline Acetyltransferase) in enteroendocrine cells (EEs) (prosTS>), progenitor cells (PCs) (esgTS>), ECs (myo1ATS>), hemocytes (hmlTS>), visceral muscle (howTS>). Conditions as Fig. 1e. prosTS>+: n = 20 (Hom.), n = 9 (Injury), n = 18 (Rec.) guts, prosTS>ChATRNAi: n = 20 (Hom.), n = 9 (Injury), n = 16 (Rec.) guts; esgTS>+: n = 13 (per condition) guts, esgTS>ChATRNAi: n = 15 (Hom.), n = 12 (Injury), n = 15 (Rec.) guts; myo1ATS>+: n = 11(Hom.), n = 10 (Injury), n = 12 (Rec.) guts, myo1ATS>ChATRNAi: n = 12 (Hom.), n = 10 (Injury), n = 11 (Rec.) guts; hmlTS>+: n = 13 (Hom.), n = 11 (Injury), n = 10 (Rec.) guts, hmlTS>ChATRNAi: n = 12 (Hom.), n = 11 (Injury), n = 11 (Rec.) guts; howTS>+: n = 11(Hom.), n = 10 (Injury), n = 15 (Rec.) guts, howTS>ChATRNAi: n = 12 (Hom.), n = 11 (Injury), n = 15 (Rec.) guts examined over two independent experiments per cell type. Statistics: Sidak’s two-way Anova. b, pH3+ counts from control (esg>+) and from flies without EEs (esg>scRNAi). n = 12 (control), n = 10 (esg>scRNAi) guts examined over 2 independent experiments. Statistics: two-tailed t-test. c, VNC (adult Ventral Nerve Cord), brain, and gut from R49E06>mCD8GFP and R49E06>2xEGFP flies. Images are representative of 3 independent experiments with similar results. anti-GFP: green. scale bar: 100 μm. d, Posterior VNC from R49E06>mCD8GFP flies and together with the cholinergic repressor R49E06>mCD8GFP/ChAT-Gal80. anti-GFP: green. scale bar: 100 μm. Images are representative of 2 independent experiments with similar results. e-f, Z-stack (e) and single Z-planes (f) from posterior VNC of R49E06>6xmCherry. anti-DsRed: magenta, anti-ChAT: yellow, numbered squares: ChAT+R49E06-neurons. scale bar: 50 μm(e), 10 μm (f). Image (e) is representative of 2 independent experiments with similar results. g, Posterior VNC from R49E06>6xmCherry. anti-pros: magenta, anti-DsRed: cyan. Ventral and dorsal from same stack. scale bar: 100 μm. Images are representative of 2 independent experiments with similar results. h, R49E06-innervations (anti-GFP, green) in midguts of R49E06>mCD8GFP flies; a’: R4, Homeostasis, b’: R5, Recovery d2. Red square: domain of R49E06-innervation in c. c’: R49E06-innervation (grey line), anti-ChAT: yellow. scale bar: 20 μm(h-a’), 10 μm (h-b’), 2 μm (h-c’). Images are representative of 2 independent experiments with similar results per condition. i, a’: innervated R4, b’: R5 from R49E06>mCD8GFP flies during Homeostasis. anti-GFP: R49E06-innervations (green), anti-Syt1: synaptic-vesicle marker (magenta). Yellow dots: Syt1+ boutons across innervations. scale bar: 4 μm. Images are representative of 2 independent experiments with similar results. j, R49E06TS>syt1HA fly abdomen during Recovery d2. Yellow arrows: R49E06-innervations (anti-HA, magenta). scale bar: 50 μm. Images are representative of 3 independent experiments with similar results. k, Fly abdomen with DenMarK expressed in R49E06-projections (R49E06TS>DenMark) during Recovery d2 (as Fig. 4a). anti-DsRed: DenMark (yellow). White arrow: DenMark-expressing ARCEN-projections, Dotted red line: gut. scale bar: 100 μm. Images are representative of 2 independent experiments with similar results. l, R5 from R49E06TS>syt1HA+mexLexA>6xLexAopGFP (a’) and R49E06TS>syt1HA+mexLexA>LexAopGFP (b’) flies during Recovery d2. Yellow arrowheads: R49E06-innervations carrying the presynaptic marker syt1HA (anti-HA, magenta) near ECs (anti-GFP, green). Images are representative of 3 independent experiments with similar results. scale bar: 10 μm. Phalloidin: muscle (blue). DAPI: nuclei (blue or white); n.s.: non-significant. Data are presented as mean values ± SEM.

Source data

Extended Data Fig. 7 Egr-ARCENs signaling promotes recovery.

a-b, Pros, upd3, vn, egr expression levels from control (R49E06TS>+) guts and guts after knocking down ChAT in R49E06-neurons (R49E06TS>ChATRNAi). Conditions as Fig. 1e. a: n = 3 biologically independent samples. b: n = 4 biologically independent samples. Normalized to R49E06TS>+. Statistics: (a) two-tailed t-test, (b) Sidak’s two-way Anova: p = 0.0038 (upd3), p = 0.0412 (vn), p = 0.0298(egr). c, pH3+ counts from R49E06TS>+ (control), R49E06TS>ChATRNAi flies and flies co-expressing the VNC repressor (R49E06TS>ChATRNAi/Tsh-Gal80). n = 21 (control), n = 24 (R49E06TS>ChATRNAi, R49E06TS>ChATRNAi/Tsh-Gal80) guts examined over 3 independent experiments. Statistics: Dunn’s Kruskal-Wallis test: p = 0.0004. Conditions as Fig. 1e. d, pH3+ counts from R49E06TS>+ and R49E06TS>ChATRNAi flies after oral Ecc15 infection or 5% sucrose feeding (as Extended Data Fig. 2g). n = 27 (R49E06TS>+ per condition), n = 24 (R49E06TS>ChATRNAi, sucrose), n = 32 (R49E06TS>ChATRNAi, Ecc15) guts examined over 3 independent experiments. Statistics: Dunn’s Kruskal-Wallis test: p = 0.013. e, Experimental schematic and pH3+ counts, from control (ARCENs>+) files, flies with 6 h thermo-activation of ARCENs with theTrpA1 channel (ARCENs>TrpA1) and when cholinergic neurons are inhibited (ARCENs>TrpA1/ChAT-Gal80). n = 28 (control), n = 29 (ARCENs>TrpA1), n = 12 (ARCENs>TrpA1/ChAT-Gal80) guts examined over 2 independent experiments. Dunn’s Kruskal-Wallis test: p = 0.0005(control vs TrpA1), p = 0.0069 (TrpA1 vs TrpA1/ChAT-Gal80). f, upd3, vn, egr expression levels from ARCENs>+ (control) and ARCENs>TrpA1 guts. Conditions as Extended Data Fig. 7e. n = 3 biologically independent samples per genotype. Normalized to ARCENs>+. Sidak’s two-way Anova: p = 0.0114 (upd3), p = 0.0109 (vn), p = 0.0461(egr). g, Validation of R49E06QF. a’: gut (scale bar: 200 μm), b’: posterior VNC (scale bar 50 μm). Images are representative of 2 independent experiments with similar results. h, pH3+ counts from control (ARCENsTS>+) flies, flies with TNF receptor wgn reduced in ARECNs (ARCENsTS>wgnRNAi-2) and flies co-expressing the VNC repressor (ARCENsTS>wgnRNAi-2/Tsh-Gal80). Conditions as Fig. 1e. n = 21 (control), n = 22 (ARCENsTS>wgnRNAi-2), n = 25(ARCENsTS>wgnRNAi-2/Tsh-Gal80) guts examined over 3 independent experiments. Dunn’s Kruskal-Wallis: p = 0.0004(control vs wgnRNAi-2), p = 0.0105(wgnRNAi-2 vs wgnRNAi-2 /Tsh-Gal80). i, pH3+ from control (LucRNAi) and flies with egr reduced (egrRNAi) in progenitor cells (PCs) (esgTS>), ECs (mexTS>) and hemocytes (hmlTS>). Conditions as Fig. 1e. esgTS: n = 13 (control), n = 14 (egrRNAi) guts examined over 2 independent experiments (two-tailed Mann-Whitney test). mexTS: n = 12 (control), n = 13 (egrRNAi) guts examined over 2 independent experiments (two-tailed Mann-Whitney test). hmlTS: n = 14 (control), n = 13 (egrRNAi) guts examined over 2 independent experiments (two-tailed Mann-Whitney test, p = 0.028). esg+mexTS: n = 14 guts per genotype examined over 2 independent experiments (two-tailed Mann-Whitney test). mex+hmlTS: n = 16 (control), n = 13 (egrRNAi) guts examined over 2 independent experiments (two-tailed t-test). esg+hmlTS: n = 21 (control), n = 19 (egrRNAi) guts examined over 3 independent experiments (two-tailed Mann-Whitney test). esg+mex+hmlTS: n = 16 (control), n = 19 (egrRNAi) guts examined over 3 independent experiments (two-tailed Mann-Whitney test). j, pH3+ counts from esg+hml+mexTS>LucRNAi (control) and esg+hml+mexTS>egrRNAi flies. Conditions as Fig. 1e. control: n = 23 (Hom.), n = 22 (Injury), n = 40 (Rec.) guts; egrRNAi: n = 24 (Hom.), n = 22 (Injury), n = 39 (Rec.) guts examined over 3 independent experiments. Statistics: Sidak’s two-way Anova. k, a’: Schematic of Egr-GFP bound to extracellular morphotrap (VHHaGFP). b’-d’: Images from the abdomen (b’,d’) and thorax (c’) of flies expressing the morhotrap in ARCENs while expressing Egr-GFP (ARCENsTS>morphotrap/Egr-GFP) and of control flies without the morphotrap (ARCENsTS>Cherry/Egr-GFP). white dotted lines: ARCEN projections. red lines: midgut (b’,d’: posterior, c’: anterior). Sectioning as Fig. 4a. anti-DsRed: Morphotrap and Cherry (magenta). Anti-GFP: Egr (green), Phalloidin: muscle (blue), DAPI: nuclei (blue). Images are representative of 2 independent experiments with similar results. scale bar 50 μm. n.s.: non-significant, *: 0.05 > p > 0.01, **: 0.01 < p < 0.001, ***: p < 0.001. Data are presented as mean values ± SEM.

Source data

Extended Data Fig. 8 Ca2+ spreads in ECs via gap junctions.

a, Gut image with a subpopulation of ECs (spECs) expressing GFP (spECs > 6xGFP) that are located in R4c (between R4 and R5). anti-GFP: green. Red dotted square: area imaged in Extended Data Fig. 8b. scale bar 100 μm. Image is representative of 2 independent experiments with similar results. b, a’: Posterior midgut images of flies expressing CsChrimson in spECs (spEC>CsChrimson, yellow) while expressing GCAMP7c in all ECs (mexLexA >LexAopGCAMP7c, grey). b’: Color-coded sequential frames from spEC>CsChrimson+mexLexA > LexAopGCaMP7c gut prior (t30) and during (t60) CsChrimson-activation. Lower panels: Heptanol addition (gap junction blocker). c’: Fluorescence intensity (ΔF/F0) of neighboring ECs (non-expressing CsChrimson) per frame (~3 sec/frame) per condition. Upper graph: average ΔF/F0 per condition. Lower graph: individual ΔF/F0 per gut. n = 10 (Neighboring ECs), n = 9 (Neighboring ECs+Heptanol) guts examined over 3 independent experiments. Statistics: two-way Anova. yellow dots: CsChrimson-expressing ECs (spECs). scale bar 20 μm. c, Mean expression of each Innexin (gap junction components) in all snRNAseq EC clusters per condition (n = 4547 nuclei in EC clusters). Boxplot: median, 1st and 3rd quartile, whiskers: minimum maximum values. d, Graph depicting Inx2 and Inx7 mean expression per snRNAseq gut cluster and condition (n = 7411 gut nuclei). e, Graph depicting the percentage of nuclei expressing Inx7 and Inx2 per snRNAseq gut cluster and condition (n = 7411 gut nuclei). f, Posterior midgut expressing GFP in ECs (mex>2xGFP). anti-GFP: green, anti-Inx2: magenta. scale bar 20 μm. Image is representative of 2 independent experiments with similar results. g, Posterior midgut of control (mexTS>+), and when conditionally knocking down Inx2 and Inx7 in ECs (mexTS>Inx2RNAi and mexTS>Inx7RNAi). Conditions: 2 days standard food (29 °C). anti-Inx2: grey. Images are representative of 2 independent experiments with similar results. scale bar 20 μm. h, Validation of Inx7 RNAi. n = 3 biologically independent samples per genotype. Statistics: two-tailed t-test (p = 0.0188). i, pH3+ counts from spECs>CsChrimson and spECs>CsChrimson+ Inx2RNAi flies without or with 7hr opto-activation (red square) during Recovery d1. No light: n = 17(spECs>CsChrimson), n = 18 (spECs>CsChrimson+ Inx2RNAi) guts; Red light: n = 18(spECs>CsChrimson), n = 22 (spECs>CsChrimson+ Inx2RNAi) guts, examined over 3 independent experiments (Tukey’s two-way Anova). j, Posterior midgut images from mexTS>+, mexTS>nAcRβ3, mexTS>Inx2RNAi and mexTS> nAcRβ3+Inx2RNAi flies. scale bar 20μm. Conditions as Fig. 5f. anti-pdm1: ECs (grey). Accompanying boxplot: pdm1+ ratio (median, 1st and 3rd quartile, whiskers: minimum maximum values). n = 7 (mexTS>nAcRβ3), n = 6 (mexTS>+, mexTS>Inx2RNAi, mexTS> nAcRβ3+Inx2RNAi) guts, examined over 2 independent experiments. Tukey’s two-way Anova: p = 0.0392 (mexTS>+ vs mexTS>nAcRβ3), p = 0.0307 (mexTS>+ vs mexTS>Inx2RNAi), p = 0.0003 (mexTS>nAcRβ3 vs mexTS> nAcRβ3+Inx2RNAi). k, Relative fluorescence intensity (ΔF/F0) per frame (3 s per frame) per genotype and per condition of individual guts as described in Fig. 5g. n = 6(Hom.), n = 9(Rec.),n = 8(Inx2RNAi) guts examined over 2 independent experiments. DAPI: blue (nuclei). *: 0.05>p > 0.01, **: 0.01<p < 0.001, ***: p < 0.001. Data are presented as mean values ± SEM.

Source data

Extended Data Fig. 9 ARCENs trigger nAchRβ3-mediated Ca2+ currents in ECs to promote intestinal epithelial recovery after injury.

Model: During recovery, ECs become sensitive (Ace reduction) and receptive (nAChRβ3 increase) to ACh while ARCEN-innervations strengthen their Syt1+ boutons in an Egr-dependent manner. Cholinergic signaling from ARCENs to ECs triggers nAChR-mediated Ca2+ currents that propagate across more ECs via Inx2–Inx7 gap junctions to advance EC maturation, ion balance and transition to homeostasis. Illustration generated with BioRender.com.

Supplementary information

Supplementary Information

Supplementary methods and full genotypes per figure and Extended Data figure.

Reporting Summary

Supplementary Figure 1

Sorting strategy. Flow cytometric sorting of nuclei from fly guts during Homeostasis and Recovery d2. Nuclei were stained with fluorescent DNA dye DRAQ7. Several nuclei populations indicate polyploid gut cells. n = 70 guts per sample.

Supplementary Tables 1–2

Supplementary Table 1. Top 20 upregulated genes in EC clusters during Homeostasis. Average expression, fold change and P value of the 20 most significantly upregulated genes in EC clusters during Homeostasis as shown in Extended Data Fig. 1f. Statistics: two-tailed negative binomial exact test, adjusted with Benjamini–Hochberg procedure. Supplementary Table 2. Top 20 upregulated genes in EC clusters during Recovery d2. Average expression, fold change and P value of the 20 most significantly upregulated genes in EC clusters during Recovery d2 as shown in Extended Data Fig. 1f. Statistics: two-tailed negative binomial exact test, adjusted with Benjamini–Hochberg procedure.

Supplementary Video 1

Cholinergic sensitivity assay during Homeostasis. Supplementary Videos 1–3 depict cholinergic sensitivity assay in ECs of the posterior midgut as described in Fig. 1g. Supplementary Video 1. mexTS>GCaMP7c during Homeostasis. Supplementary Video 2. mexTS>GCaMP7c during Recovery d2. Supplementary Video 3. mexTS>GCaMP7c + dCas9VPR, gRNA-Ace during Recovery d2.

Supplementary Video 2

Cholinergic sensitivity assay during Recovery d2.

Supplementary Video 3

Cholinergic sensitivity assay and Ace upregulation during Recovery d2.

Supplementary Video 4

Nicotinic assay during Homeostasis. Supplementary Videos 4–6 depict nicotinic sensitivity assay in ECs of the posterior midgut as described in Fig. 2f,g. Supplementary Video 4. mexTS>GCaMP7c during Homeostasis. Supplementary Video 5. mexTS>GCaMP7c during Recovery d2. Supplementary Video 6. mexTS>GCaMP7c + nAChRβ3RNAi during Recovery d2.

Supplementary Video 5

Nicotinic assay during Recovery d2.

Supplementary Video 6

Nicotinic assay and nAChRβ3 reduction during Recovery d2.

Supplementary Video 7

R49E06-axonal projections near ECs. Video of R49E06 innervations at R4 in R49E06TS>syt1HA + mexLexA>6xLexAopGFP fly during Recovery d2 as described in Fig. 4b.

Supplementary Video 8

Inducing Ca2+ currents in ECs. This video depicts Ca2+ propagation in ECs during CsChrimson-activation as described in Fig. 5a from spECs>CsChrimson/mexLexA>LexAopGCaMP7c flies.

Supplementary Video 9

Nicotinic assay in ECs during Recovery d2. Supplementary Videos 9 and 10 depict nicotinic sensitivity assay in ECs of the posterior midgut while reducing Inx2 as described in Fig. 5g. Supplementary Video 9. mexTS>GCaMP7c during Recovery d2. Supplementary Video 10. mexTS>GCaMP7c + Inx2RNAi during Recovery d2.

Supplementary Video 10

Nicotinic assay and Inx2 reduction during Recovery d2.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petsakou, A., Liu, Y., Liu, Y. et al. Cholinergic neurons trigger epithelial Ca2+ currents to heal the gut. Nature 623, 122–131 (2023). https://doi.org/10.1038/s41586-023-06627-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06627-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing