Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A crystalline doubly oxidized carbene

Abstract

The chemistry of carbon is governed by the octet rule, which refers to its tendency to have eight electrons in its valence shell. However, a few exceptions do exist, for example, the trityl radical (Ph3C∙) (ref. 1) and carbocation (Ph3C+) (ref. 2) with seven and six valence electrons, respectively, and carbenes (R2C:)—two-coordinate octet-defying species with formally six valence electrons3. Carbenes are now powerful tools in chemistry, and have even found applications in material and medicinal sciences4. Can we undress the carbene further by removing its non-bonding electrons? Here we describe the synthesis of a crystalline doubly oxidized carbene (R2C2+), through a two-electron oxidation/oxide-ion abstraction sequence from an electron-rich carbene5. Despite a cumulenic structure and strong delocalization of the positive charges, the dicoordinate carbon centre maintains significant electrophilicity, and possesses two accessible vacant orbitals. A two-electron reduction/deprotonation sequence regenerates the parent carbene, fully consistent with its description as a doubly oxidized carbene. This work demonstrates that the use of bulky strong electron-donor substituents can simultaneously impart electronic stabilization and steric protection to both vacant orbitals on the central carbon atom, paving the way for the isolation of a variety of doubly oxidized carbenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Previous attempts at carbene oxidation.
Fig. 2: Synthesis and characterization of doubly oxidized carbene 12+.
Fig. 3: Doubly oxidized carbene 12+[TfO]2.
Fig. 4: Reactivity of doubly oxidized carbene 12+ and a reversible 1/12+ redox system.

Similar content being viewed by others

Data availability

Crystallographic data for this paper (CCDC 22456112245613, 2267007, 2267374) are available free of charge via the Cambridge Crystallographic Data Centre. Non-crystallographic data are provided in the Supplementary information file.

References

  1. Gomberg, M. An instance of trivalent carbon: triphenylmethyl. J. Am. Chem. Soc. 22, 757–771 (1900).

    Article  Google Scholar 

  2. Grützmacher, H. & Marchand, C. M. Heteroatom stabilized carbenium ions. Coord. Chem. Rev. 163, 287–344 (1997).

    Article  Google Scholar 

  3. Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Bellotti, P., Koy, M., Hopkinson, M. N. & Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 5, 711–725 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Loh, Y. K., Melaimi, M., Munz, D. & Bertrand, G. An air-stable “masked” bis(imino)carbene: a carbon-based dual ambiphile. J. Am. Chem. Soc. 145, 2064–2069 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Igau, A., Grützmacher, H., Baceiredo, A. & Bertrand, G. Analogous α,α′-bis-carbenoid triply bonded species: synthesis of a stable λ3-phosphinocarbene−λ3-phosphaacetylene. J. Am. Chem. Soc. 110, 6463–6466 (1988).

    Article  CAS  Google Scholar 

  7. Arduengo, A. J. III, Harlow, R. L. & Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 113, 361–363 (1991).

    Article  CAS  Google Scholar 

  8. Parker, V. D. & Bethell, D. Carbene cation radicals: the kinetics of their formation from diazoalkane cation radicals and their reactions. J. Am. Chem. Soc. 109, 5066–5072 (1987).

    Article  CAS  Google Scholar 

  9. Bethell, D. & Parker, V. D. In search of carbene ion radicals in solution: reaction pathways and reactivity of ion radicals of diazo compounds. Acc. Chem. Res. 21, 400–407 (1988).

    Article  CAS  Google Scholar 

  10. Bally, T., Matzinger, S. & Truttman, L. Diphenyl carbene cation: electronic and molecular structure. J. Am. Chem. Soc. 115, 7007–7008 (1993).

    Article  CAS  Google Scholar 

  11. Stoub, D. & Goodman, G. V. Diarylcarbene cation radicals: generation and chemical reactivity in solution. J. Am. Chem. Soc. 119, 11110–11111 (1997).

    Article  CAS  Google Scholar 

  12. Ramnial, T., McKenzie, I., Gorodetsky, B., Tsang, E. M. W. & Clyburne, J. A. C. Reactions of N-heterocyclic carbenes (NHCs) with one-electron oxidants: possible formation of a carbene cation radical. Chem. Commun. 1054–1055 (2004).

  13. Dong, Z. et al. SET processes in Lewis acid−base reactions: the tritylation of N-heterocyclic carbenes. Chem. Sci. 11, 7615–7618 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shaikh, A. C., Veleta, J. M., Moutet, J. & Gianetti, T. L. Trioxatriangulenium (TOTA+) as a robust carbon-based Lewis acid in frustrated Lewis pair chemistry. Chem. Sci. 12, 4841–4849 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maiti, A. et al. Disclosing cyclic(alkyl)(amino)carbenes as one-electron reductants: synthesis of acyclic(amino)(aryl)carbene-based Kekulé diradicaloids. Chem. Eur. J. 28, e202104567 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Song, H. & Lee, E. Revisiting the reaction of IPr with tritylium: an alternative mechanistic pathway. Chem. Eur. J. 29, e202203364 (2023).

  17. Zhang, Q., Lei, H., Zhou, C.-Y. & Wang, C. Construction of N-polyheterocycles by N-heterocyclic carbene catalysis via a regioselective intramolecular radical addition/cyclization cascade. Org. Lett. 24, 4615–4619 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, L., Zhang, Q. & Wang, C. Redox-neutral generation of iminyl radicals by N-heterocyclic carbene catalysis: rapid access to phenanthridines from vinyl azides. Org. Lett. 24, 5913–5917 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Courtenay, S., Mutus, J. Y., Schurko, R. W. & Stephan, D. W. The extended borinium cation: [(tBu3PN)2B]+. Angew. Chem. Int. Ed. 41, 498–501 (2002).

    Article  CAS  Google Scholar 

  20. Shoji, Y., Tanaka, N., Mikami, K., Uchiyama, M. & Fukushima, T. A two-coordinate boron cation featuring C−B+−C bonding. Nat. Chem. 6, 498–503 (2014).

  21. Bamford, K. L., Qu, Z.-W. & Stephan, D. W. Activation of H2 and Et3SiH by the borinium cation [Mes2B]+: avenues to cations [MesB(μ-H)2(μ-Mes)BMes]+ and [H2B(μ-H)(μ- Mes)B(μ-Mes)(μ-H)BH2]+. J. Am. Chem. Soc. 141, 6180–6184 (2019).

  22. Franz, D. & Inoue, S. Cationic complexes of boron and aluminum: an early 21st century viewpoint. Chem. Eur. J. 25, 2898–2926 (2018).

    Article  PubMed  Google Scholar 

  23. Piers, W. E., Bourke, S. C. & Conroy, K. C. Borinium, borenium, and boronium ions: synthesis, reactivity, and applications. Angew. Chem. Int. Ed. 44, 5016–5036 (2005).

    Article  CAS  Google Scholar 

  24. Ochiai, T., Franz, D. & Inoue, S. Applications of N-heterocyclic imines in main group chemistry. Chem. Soc. Rev. 45, 6327–6344 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Goettel, J. T., Gao, H., Dotzauer, S. & Braunschweig, H. MeCAAC=N: a cyclic (alkyl)(amino)carbene imino ligand. Chem. Eur. J. 26, 1136–1143 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Huynh, S. et al. Cyclic alkyl(amino)iminates (CAAIs) as strong 2σ,4π-electron donor ligands for the stabilisation of boranes and diboranes(4): a synthetic and computational study. Dalton Trans. 52, 3869–3876 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Pal, S., Manae, M. A., Khade, V. V. & Khan, S. Reactivity of N-heterocyclic carbene, 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, towards heavier halogens (Br2 and I2). J. Indian Chem. Soc. 95, 765–770 (2018).

    CAS  Google Scholar 

  28. Loh, Y. K., Fuentes, M. Á., Vasko, P. & Aldridge, S. Successive protonation of an N-heterocyclic imine derived carbonyl: superelectrophilic dication versus masked acylium ion. Angew. Chem. Int. Ed. 57, 16559–16563 (2018).

    Article  CAS  Google Scholar 

  29. Loh, Y. K. et al. An acid-free anionic oxoborane isoelectronic with carbonyl: facile access and transfer of a terminal B=O double bond. J. Am. Chem. Soc. 141, 8073–8077 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Januszewski, J. A. & Tykwinski, R. R. Synthesis and properties of long [n]cumulenes (n ≥ 5). Chem. Soc. Rev. 43, 3184–3203 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Pinter, P. & Munz, D. Controlling möbius-type helicity and the excited-state properties of cumulenes with carbenes. J. Phys. Chem. A 124, 10100–10110 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Couchman, S. A., Wilson, D. J. D. & Dutton, J. L. Is the perfluorinated trityl cation worth a revisit? A theoretical study on the Lewis acidities and stabilities of highly halogenated trityl derivatives. Eur. J. Org. Chem. 3902–3908 (2014).

  33. Jupp, A. R., Johnstone, T. C. & Stephan, D. W. The global electrophilicity index as a metric for Lewis acidity. Dalton Trans. 47, 7029–7035 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, J., Liu, L. L., Cao, L. L. & Stephan, D. W. A phosphorus Lewis super acid: η5-pentamethylcyclopentadienyl phosphorus dication. Chem 4, 2699–2708 (2018).

    Article  CAS  Google Scholar 

  35. Mehlmann, P., Witteler, T., Wilm, L. F. B. & Dielmann, F. Isolation, characterization and reactivity of three-coordinate phosphorus dications isoelectronic to alanes and silylium cations. Nat. Chem. 11, 1139–1143 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Olah, G. et al. Bridgehead adamantyl, diamantyl, and related cations and dications. J. Am. Chem. Soc. 107, 2764–2772 (1985).

    Article  CAS  Google Scholar 

  37. Kato, T. & Reed, C. A. Putting tert-butyl cation in a bottle. Angew. Chem. Int. Ed. 43, 2908–2911 (2004).

    Article  CAS  Google Scholar 

  38. Légaré, M.-A., Pranckevicius, C. & Braunschweig, H. Metallomimetic chemistry of boron. Chem. Rev. 119, 8231–8261 (2019).

    Article  PubMed  Google Scholar 

  39. Weetman, S. & Inoue, S. The road travelled: after main-group elements as transition metals. ChemCatChem 10, 4213–4228 (2018).

    Article  CAS  Google Scholar 

  40. Martin, D., Melaimi, M., Soleilhavoup, M. & Bertrand, G. Stable singlet carbenes as mimics for transition metal centers. Chem. Sci. 2, 389–399 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Lipshultz, J. M., Li, G. & Radosevich, A. T. Main group redox catalysis of organopnictogens: vertical periodic trends and emerging opportunities in group 15. J. Am. Chem. Soc. 143, 1699–1721 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Olah, G. A. My search for carbocations and their role in chemistry (Nobel lecture). Angew. Chem. Int. Ed. 34, 1393–1405 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF (grant no. CHE-2246948). We thank A*STAR for a postdoctoral fellowship for Y.K.L. We acknowledge the scientific support and HPC resources provided by the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). The hardware is funded by the German Research Foundation (DFG). We thank F. F. Mulks for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.K.L. conceived and performed the synthetic experiments. M.M. and M.G. performed the X-ray crystallographic analyses. D.M. performed the computational work. G.B. supervised the project. The manuscript was written by Y.K.L., M.M. and G.B.

Corresponding authors

Correspondence to Ying Kai Loh or Guy Bertrand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30, Tables 1–10, Methods and references.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loh, Y.K., Melaimi, M., Gembicky, M. et al. A crystalline doubly oxidized carbene. Nature 623, 66–70 (2023). https://doi.org/10.1038/s41586-023-06539-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06539-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing