Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new avialan theropod from an emerging Jurassic terrestrial fauna

Abstract

Birds are descended from non-avialan theropod dinosaurs of the Late Jurassic period, but the earliest phase of this evolutionary process remains unclear owing to the exceedingly sparse and spatio-temporally restricted fossil record1,2,3,4,5. Information about the early-diverging species along the avialan line is crucial to understand the evolution of the characteristic bird bauplan, and to reconcile phylogenetic controversies over the origin of birds3,4. Here we describe one of the stratigraphically youngest and geographically southernmost Jurassic avialans, Fujianvenator prodigiosus gen. et sp. nov., from the Tithonian age of China. This specimen exhibits an unusual set of morphological features that are shared with other stem avialans, troodontids and dromaeosaurids, showing the effects of evolutionary mosaicism in deep avialan phylogeny. F. prodigiosus is distinct from all other Mesozoic avialan and non-avialan theropods in having a particularly elongated hindlimb, suggestive of a terrestrial or wading lifestyle—in contrast with other early avialans, which exhibit morphological adaptations to arboreal or aerial environments. During our fieldwork in Zhenghe where F. prodigiosus was found, we discovered a diverse assemblage of vertebrates dominated by aquatic and semi-aquatic species, including teleosts, testudines and choristoderes. Using in situ radioisotopic dating and stratigraphic surveys, we were able to date the fossil-containing horizons in this locality—which we name the Zhenghe Fauna—to 148–150 million years ago. The diversity of the Zhenghe Fauna and its precise chronological framework will provide key insights into terrestrial ecosystems of the Late Jurassic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology, phylogenetic and palaeogeographical position of F. prodigiosus, IVPP V31985.
Fig. 2: Anatomy of F. prodigiosus, IVPP V31985.
Fig. 3: Three-dimensional morphometric space of limb bones and cursoriality of Mesozoic theropods.
Fig. 4: Stratigraphic log and vertebrate fossil assemblage discovered from the Late Jurassic Zhenghe Fauna.

Similar content being viewed by others

Data availability

The specimen (IVPP V31985) described in this study is archived and available on request from the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences. Phylogenetic data matrices that support the findings of this research are included as Supplementary Information. The raw data used in morphometric analyses are available at figshare (https://doi.org/10.6084/m9.figshare.22548385). The Life Science Identifier for Fujianvenator is urn:lsid:zoobank.org:act:E47B6E41-4D48-40A1-B3CD-974D84A1E53E.

Code availability

The R code used in morphometric analyses is available at figshare (https://doi.org/10.6084/m9.figshare.22548385).

References

  1. Rauhut, O. W. M. & Foth, C. in The Evolution of Feathers: From Their Origin to the Present (eds Foth, C. & Rauhut, O. W. M.) 27–45 (Springer, 2020).

  2. Turner, A. H., Makovicky, P. J. & Norell, M. A. A review of dromaeosaurid systematics and paravian phylogeny. Bull. Am. Mus. Nat. Hist. 371, 1–206 (2012).

    Article  Google Scholar 

  3. Wang, M. & Zhou, Z. in The Biology of the Avian Respiratory System (ed. Maina, N. J.) 1–26 (Springer, 2017).

  4. Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).

    Article  PubMed  Google Scholar 

  5. Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol. 25, R888–R898 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Gauthier, J. Saurischian monophyly and the origin of birds. Mem. Calif. Acad. Sci. 8, 1–55 (1986).

    Google Scholar 

  7. Xu, X., You, H., Du, K. & Han, F. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475, 465–470 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Xu, X., Zhou, Z., Sullivan, C., Wang, Y. & Ren, D. An updated review of the Middle-Late Jurassic Yanliao Biota: chronology, taphonomy, paleontology and paleoecology. Acta Geol. Sin. 90, 2229–2243 (2016).

    Article  Google Scholar 

  9. Rauhut, O. W., Foth, C. & Tischlinger, H. The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria. PeerJ 6, e4191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhou, Z. & Wang, Y. Vertebrate diversity of the Jehol Biota as compared with other lagerstätten. Sci. China Earth Sci. 53, 1894–1907 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  11. Pol, D. & Goloboff, P. A. The impact of unstable taxa in coelurosaurian phylogeny and resampling support measures for parsimony analyses. Bull. Am. Mus. Nat. Hist. 440, 97–115 (2020).

    Google Scholar 

  12. Bever, G. S., Gauthier, J. A. & Wagner, G. P. Finding the frame shift: digit loss, developmental variability, and the origin of the avian hand. Evo. Dev. 13, 269–279 (2011).

    Article  Google Scholar 

  13. Benson, R. B. J., Hunt, G., Carrano, M. T. & Campione, N. Cope’s rule and the adaptive landscape of dinosaur body size evolution. Palaeontology 61, 13–48 (2018).

    Article  Google Scholar 

  14. Pei, R., Li, Q., Meng, Q., Norell, M. A. & Gao, K. New specimens of Anchiornis huxleyi (Theropoda: Paraves) from the Late Jurassic of northeastern China. Bull. Am. Mus. Nat. Hist. 411, 1–67 (2017).

    Article  Google Scholar 

  15. Zhou, Z. & Zhang, F. Jeholornis compared to Archaeopteryx, with a new understanding of the earliest avian evolution. Naturwissenschaften 90, 220–225 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Li, Z., Wang, M., Stidham, T. A. & Zhou, Z. Decoupling the skull and skeleton in a Cretaceous bird with unique appendicular morphologies. Nat. Ecol. Evol. 7, 20–31 (2023).

    Article  PubMed  Google Scholar 

  17. Zheng, X. et al. On the absence of sternal elements in Anchiornis (Paraves) and Sapeornis (Aves) and the complex early evolution of the avian sternum. Proc. Natl Acad. Sci. USA 111, 13900–13905 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Benson, R. B. J. & Choiniere, J. N. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds. Proc. R. Soc. B 280, 20131780 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang, M., O’Connor, J. K., Xu, X. & Zhou, Z. A new Jurassic scansoriopterygid and the loss of membranous wings in theropod dinosaurs. Nature 569, 256–259 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Hu, D., Hou, L., Zhang, L. & Xu, X. A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 461, 640–643 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Middleton, K. M. & Gatesy, S. M. Theropod forelimb design and evolution. Zool. J. Linn. Soc. 128, 149–187 (2000).

    Article  Google Scholar 

  22. Godefroit, P. et al. Reduced plumage and flight ability of a new Jurassic paravian theropod from China. Nat. Commun. 4, 1394 (2013).

    Article  PubMed  ADS  Google Scholar 

  23. Ostrom, J. H. Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Bull. Peabody Mus. Nat. Hist. 30, 1–165 (1969).

    Google Scholar 

  24. Hu, D. et al. A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution. Nat. Commun. 9, 217 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  25. Russell, D. A. & Dong, Z. A nearly complete skeleton of a new troodontid dinosaur from the Early Cretaceous of the Ordos Basin, Inner Mongolia, People’s Republic of China. Can. J. Earth Sci. 30, 2163–2173 (1993).

    Article  ADS  Google Scholar 

  26. Xu, X., Wang, X. & Wu, X. A dromaeosaurid dinosaur with a filamentous integument from the Yixian Formation of China. Nature 401, 262–266 (1999).

    Article  CAS  ADS  Google Scholar 

  27. Nebreda, S. M. et al. Disparity and macroevolutionary transformation of the maniraptoran manus. Bull. Am. Mus. Nat. Hist. 440, 183–203 (2020).

    Google Scholar 

  28. Wang, M., Wang, X., Wang, Y. & Zhou, Z. A new basal bird from China with implications for morphological diversity in early birds. Sci. Rep. 6, 19700 (2016).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  29. Mayr, G., Pohl, B., Hartman, S. & Peters, D. S. The tenth skeletal specimen of Archaeopteryx. Zool. J. Linn. Soc. 149, 97–116 (2007).

    Article  Google Scholar 

  30. Xu, X., Han, F. & Zhao, Q. Homologies and homeotic transformation of the theropod ‘semilunate’ carpal. Sci. Rep. 4, 6042 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Rauhut, O. W. M., Tischlinger, H. & Foth, C. A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany. eLife 8, e43789 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. O’Connor, J. K. A Systematic Review of Enantiornithes (Aves: Ornithothoraces). PhD thesis, Univ. Southern California (2009).

  33. Norell, M. A. & Makovicky, P. J. Important features of the dromaeosaurid skeleton II: information from newly collected specimens of Velociraptor mongoliensis. Am. Mus. Novit. 3282, 1–45 (1999).

    Google Scholar 

  34. Zhang, F., Zhou, Z., Xu, X. & Wang, X. A juvenile coelurosaurian theropod from China indicates arboreal habits. Naturwissenschaften 89, 394–398 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Xu, X. et al. A Jurassic ceratosaur from China helps clarify avian digital homologies. Nature 459, 940–944 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Chiappe, L. M., Ji, S. A., Ji, Q. & Norell, M. A. Anatomy and systematics of the Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of northeastern China. Bull. Am. Mus. Nat. Hist. 242, 1–89 (1999).

    Google Scholar 

  37. Zheng, X., Xu, X., You, H., Zhao, Q. & Dong, Z. A short-armed dromaeosaurid from the Jehol Group of China with implications for early dromaeosaurid evolution. Proc. R. Soc. B 277, 211–217 (2010).

    Article  PubMed  Google Scholar 

  38. Rhodes, M. M., Henderson, D. M. & Currie, P. J. Maniraptoran pelvic musculature highlights evolutionary patterns in theropod locomotion on the line to birds. PeerJ 9, e10855 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xu, X. et al. Mosaic evolution in an asymmetrically feathered troodontid dinosaur with transitional features. Nat. Commun. 8, 14972 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  40. Longrich, N. R. & Currie, P. J. A microraptorine (Dinosauria–Dromaeosauridae) from the Late Cretaceous of North America. Proc. Natl Acad. Sci. USA 106, 5002–5007 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Norell, M. A., & Makovicky, P. J. Important features of the dromaeosaur skeleton: information from a new specimen. Am. Mus. Novit. 3215, 1–51 (1997).

    Google Scholar 

  42. Godefroit, P. et al. A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature 498, 359–362 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Xu, X., Norell, M. A., Wang, X., Makovicky, P. J. & Wu, X. A basal troodontid from the Early Cretaceous of China. Nature 415, 780–784 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Hedrick, B. P., Manning, P. L., Lynch, E. R., Cordero, S. A. & Dodson, P. The geometry of taking flight: limb morphometrics in Mesozoic theropods. J. Morphol. 276, 152–166 (2014).

    Article  PubMed  Google Scholar 

  45. Hattori, S. Evolution of the hallux in non-avian theropod dinosaurs. J. Vertebr. Paleontol. 36, e1116995 (2016).

    Article  Google Scholar 

  46. Wang, M. et al. An Early Cretaceous enantiornithine bird with a pintail. Curr. Biol. 31, 4845–4852 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Xu, X. & Wang, X. L. Troodontid-like pes in the dromaeosaurid Sinornithosaurus. Paleontol. Soc. Korea Spec. Publ. 4, 179–188 (2000).

    Google Scholar 

  48. Makovicky, P. J. & Norell, M. A. in The Dinosauria (eds Weishampel, D., Dodson, P. & Osmólska, H.) 184–195 (Univ. California Press, 2004).

  49. Xu, X. & Wang, X. A new dromaeosaur (Dinosauria: Theropoda) from the Early Cretaceous Yixian Formation of western Liaoning. Vertebr. Palasiat. 42, 111–119 (2004).

    Google Scholar 

  50. Norell, M. A. & Makovicky, P. J. in The Dinosauria (eds Weishampel, D., Dodson, P. & Osmólska, H.) 196–209 (Univ. California Press, 2004).

  51. Foth, C. & Rauhut, O. W. M. Re-evaluation of the Haarlem Archaeopteryx and the radiation of maniraptoran theropod dinosaurs. BMC Evol. Biol. 17, 236 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. O’Connor, J. K. & Sullivan, C. Reinterpretation of the Early Cretaceous maniraptoran (Dinosauria: Theropoda) Zhongornis haoae as a scansoriopterygid-like non-avian, and morphological resemblances between scansoriopterygids and basal oviraptorosaurs. Vertebr. Palasiat. 52, 3–30 (2014).

    Google Scholar 

  53. Lee, M. S. Y., Cau, A., Naish, D. & Dyke, G. J. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345, 562–566 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Dececchi, T. A. & Larsson, H. C. E. Body and limb size dissociation at the origin of birds: Uncoupling allometric constraints across a macroevolutionary transition. Evolution 67, 2741–2752 (2013).

    Article  PubMed  Google Scholar 

  55. Lovette, I. J. & Fitzpatrick, J. W. Handbook of Bird Biology 3rd edn (John Wiley & Sons, 2016).

  56. Gatesy, S. M. & Middleton, K. M. Bipedalism, flight, and the evolution of theropod locomotor diversity. J. Vertebr. Paleontol. 17, 308–329 (1997).

    Article  Google Scholar 

  57. Christiansen, P. Locomotion in terrestrial mammals: the influence of body mass, limb length and bone proportions on speed. Zool. J. Linn. Soc. 136, 685–714 (2002).

    Article  Google Scholar 

  58. Persons, W. S. & Currie, P. J. An approach to scoring cursorial limb proportions in carnivorous dinosaurs and an attempt to account for allometry. Sci. Rep. 6, 19828 (2016).

    Article  PubMed  ADS  Google Scholar 

  59. Bureau of Geology and Mineral Resources of Fujian Province. Lithostratigraphy of Fujian Province (China Univ. Geosciences Press, 2016).

  60. Wang, D. & Shu, L. Late Mesozoic basin and range tectonics and related magmatism in Southeast China. Geosci. Front. 3, 109–124 (2012).

    Article  Google Scholar 

  61. Zhao, J., Qiu, J. & Liu, L. Early–Middle Jurassic magmatic rocks along the coastal region of southeastern China: petrogenesis and implications for paleo-Pacific plate subduction. J. Asian Earth Sci. 210, 104687 (2021).

    Article  Google Scholar 

  62. Zhou, Z. & Wang, Y. Vertebrate assemblages of the Jurassic Yanliao Biota and the Early Cretaceous Jehol Biota: comparisons and implications. Palaeoworld 26, 241–252 (2017).

    Article  MathSciNet  Google Scholar 

  63. Zhu, R., Zhou, Z. & Meng, Q. Destruction of the North China Craton and its influence on surface geology and terrestrial biotas. Chin. Sci. Bull. 65, 2954 (2020).

    Article  Google Scholar 

  64. Sullivan, C. et al. The vertebrates of the Jurassic Daohugou Biota of northeastern China. J. Vertebr. Paleontol. 34, 243–280 (2014).

    Article  Google Scholar 

  65. Liu, Y. et al. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 51, 537–571 (2009).

    Article  ADS  Google Scholar 

  66. Ludwig, K. R. User’s manual for Isoplot 3.00: a geochronlogical toolkit for Microsoft Excel. Berkeley Geochron. Cent. Spec. Publ. 4, 25–32 (2003).

    Google Scholar 

  67. Turner, A. H., Montanari, S. & Norell, M. A. A new dromaeosaurid from the Late Cretaceous Khulsan locality of Mongolia. Am. Mus. Novit. 3965, 1–48 (2021).

    Google Scholar 

  68. Brusatte, S. L., Lloyd, G. T., Wang, S. C. & Norell, M. A. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Curr. Biol. 24, 2386–2392 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).

    Article  PubMed  Google Scholar 

  70. Agnolin, F. L. & Novas, F. E. Avian Ancestors: A Review of the Phylogenetic Relationships of the Theropods Unenlagiidae, Microraptoria, Anchiornis and Scansoriopterygidae (Springer, 2013).

  71. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–314 (1994).

    Article  CAS  PubMed  ADS  Google Scholar 

  74. Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65, 228–249 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhang, C. Selecting and averaging relaxed clock models in Bayesian tip dating of Mesozoic birds. Paleobiology 48, 340–352 (2022).

    Article  Google Scholar 

  76. Xu, X. et al. Two Early Cretaceous fossils document transitional stages in alvarezsaurian dinosaur evolution. Curr. Biol. 28, 1–8 (2018).

    Article  CAS  Google Scholar 

  77. Rauhut, O. W. M. & Pol, D. Probable basal allosauroid from the early Middle Jurassic Cañadón Asfalto Formation of Argentina highlights phylogenetic uncertainty in tetanuran theropod dinosaurs. Sci. Rep. 9, 18826 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  78. Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).

    Article  Google Scholar 

  79. Revell, L. J. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).

    Article  PubMed  Google Scholar 

  80. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  81. Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. B 326, 119–157 (1989).

    CAS  ADS  Google Scholar 

  82. Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article  Google Scholar 

  83. Stoessel, A., Kilbourne, B. M. & Fischer, M. S. Morphological integration versus ecological plasticity in the avian pelvic limb skeleton. J. Morphol. 274, 483–495 (2013).

    Article  PubMed  Google Scholar 

  84. You, H. et al. A nearly modern amphibious bird from the Early Cretaceous of northwestern China. Science 312, 1640–1643 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  85. Zinoviev, A. V. Notes on the hindlimb myology and syndesmology of the Mesozoic toothed bird Hesperornis regalis (Aves: Hesperornithiformes). J. Syst. Palaeontol. 9, 65–84 (2011).

    Article  Google Scholar 

  86. Heglund, N. C. & Cavagna, G. A. Efficiency of vertebrate locomotory muscles. J. Exp. Biol. 115, 283–292 (1985).

    Article  CAS  PubMed  Google Scholar 

  87. Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. SMATR 3—an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).

    Article  Google Scholar 

  88. Pinheiro, J. et al. nlme: Linear and nonlinear mixed-effects models. R package version 3.1-158 https://CRAN.R-project.org/package=nlme (2022).

Download references

Acknowledgements

We thank W.-Q. Feng, Y. Li, S. Miao, J.-T. Feng and X. Lin for helping with fieldwork; Y. Li for specimen preparation; W. Gao for photography; and S. Miao and J.-T. Feng for laser-stimulated fluorescence imaging. This research was supported by the National Natural Science Foundation of China (42225201 and 42288201); the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-DQC002); the New Cornerstone Science Foundation through the XPLORER PRIZE; Fujian Provincial Department of Natural Resources under the program ‘Investigation of the Geological Relics and Fossil Resources of the Late Mesozoic Basins in Western Fujian’ (GY20220108); and Fujian Provincial Bureau of Geology and Mineral Exploration and Development under the program ‘Study on the Sedimentary Environment of Dinosaur Fossils in Fujian Province’ (MDDR2021-32).

Author information

Authors and Affiliations

Authors

Contributions

M.W. designed the project. M.W. and L.X. supervised the fieldwork. M.W. performed the phylogenetic and comparative analyses. L.X., R.C., M.L., J.T., G.Z., L.W., W.H. and Y. L. collected samples and supervised the radioisotopic dating experiments. M.W. and C.Z. performed the tip-dating analyses. L.D., H.Y., and X.X. studied the vertebrate assemblage and paleoenvironment. M.W. and Z.Z. wrote the manuscript with input from all of the authors.

Corresponding author

Correspondence to Min Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Steve Brusatte, Daniel Field and Fernando Novas for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Counter slab of holotype of F. prodigiosus, IVPP V31985.

a, Photograph. b, Line drawing. ch, chevron; cv, caudal vertebra; dv, dorsal vertebra; gs, gastralia; lf, left femur; lfi, left fibula; lh, left humerus; li, left ilium; is, ischium; lr, left radius; ls, left scapula; lt, left tibia; lu, left ulna; mI to mV, metatarsal I to V; mcI to III, metacarpal I to III; pt, proximal tarsal; pu, pubis; rh, right humerus; ra, radiale; rc, right coracoid; rf, right femur; rfi, right fibula; ri, right ilium; rs, right scapula; rt, right tibia; st, sternum; un, ulnare; ?sv, possible sacral vertebra; I-1 to I-2, manual phalanx I-1 and I-2; II-1 to II-3, manual phalanx II-1 to II-3; III-1 to III-4, manual phalanx III-1 to III-4. Scale bars, 20 mm.

Extended Data Fig. 2 Additional anatomy of F. prodigiosus, IVPP V31985.

a, Right hand. b, Close-up of the left metacarpals. c, Pelvis. d, Proximal ends of metatarsals. is, ischium; lc, lateral condyle; lct, lateral condyle of tibiotarsus; li, left ilium; mc, medial condyle; mct, medial condyle of tibiotarsus; mcI to III, metacarpal I to III; mtI to mtV, metatarsal I to V; ob, obturator process; pa, pubic apron; pb, pubic boot; pp, posterior distal process; ri, right ilium; I-1 to I-2, manual phalanx I-1 and I-2; II-1, manual phalanx II-1; III-1 to III-4, manual phalanx III-1 to III-4. Scale bars, 10 mm.

Extended Data Fig. 3 Comparison of the pelvic anatomy of F. prodigiosus with that of other selected paravians.

a,b, Photograph (a) and reconstruction (b) of the pelvis of F. prodigiosus. cf, Reconstructed pelvis: avialan Anchiornis (c; modified from refs. 7 and 87), troodontid Sinovenator changii (d; modified from ref. 4), avialan Archaeopteryx (e; modified from ref. 4) and dromaeosaurid Microraptor (f; modified from ref. 4). ob, obturator process; pdp, posterior distal process; ppp, posterior proximal process. The arrowheads denote the constriction at the base of the obturator process. Line drawings are not to scale.

Extended Data Fig. 4 Morphometric analyses of limb-bone length across the Mesozoic theropod phylogeny.

af, Binary plots of the first three principal components (PCs) of the phylogenetic principal components analyses of the six limb segments (a,b), forelimb (c,d), and hindlimb (e,f).

Extended Data Fig. 5 Time-scaled phylogeny showing the position of F. prodigiosus through parsimony analyses.

The phylogeny is the strict consensus resulting from maximum parsimony analyses. The bootstrap and Bremer values are denoted in normal and bold italic fonts, respectively. Thick lines represent the first and last appearance datum of the geological stages or epochs in which a given species was discovered.

Extended Data Fig. 6 Dated phylogeny showing the position of F. prodigiosus through Bayesian tip-dating analysis.

The phylogeny is the majority-rule consensus obtained from the posterior trees of Bayesian tip-dating analysis using the fossilized birth–death model. The error bars at the nodes represent the 95% highest posterior density intervals. The shaded circles at the nodes represent the posterior probability of the corresponding clade.

Extended Data Fig. 7 Comparison of the hindlimb proportions of F. prodigiosus with those of stem and crown groups of theropods.

a,b, Ternary plot of the length proportion of the hindlimb segments (femur, tibia and metatarsal III) of Mesozoic theropods (a), and with the inclusion of crown birds (b).

Extended Data Fig. 8 Additional vertebrate fossils discovered in the Zhenghe Fauna during the 2022 fieldwork.

a,b, Teleostei indet. (Actinopterygii: Neopterygii). ch, Testudines indet. (Reptilia: Pantestudines). ik, Allochoristodera indet. (Reptilia: Choristodera). All photographs were taken in the field shortly after the discovery of the corresponding specimens.

Extended Data Fig. 9 Photograph of the 2022 fieldwork in Zhenghe.

Aerial shot showing the excavation area.

Extended Data Fig. 10 LA-ICP-MS concordial age plots of the fossil-bearing horizons of the Zhenghe Fauna.

a,b, Samples from the tuffite layers deposited just below (c, PM702-1) and above (d, PM701-4) the IVPP V31985-bearing horizon. c,d, Samples from the ignimbrites that underlie (a, Bdx03) and overlie (b, Bdx04) the fossil-bearing sediments.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-2, Supplementary Tables 1, 4-7, character description, dataset used in phylogenetic analysis and supplementary references

Reporting Summary

Supplementary Table 2

Supplementary Table 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Wang, M., Chen, R. et al. A new avialan theropod from an emerging Jurassic terrestrial fauna. Nature 621, 336–343 (2023). https://doi.org/10.1038/s41586-023-06513-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06513-7

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing