Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-entropy halide perovskite single crystals stabilized by mild chemistry

Abstract

Although high-entropy materials are excellent candidates for a range of functional materials, their formation traditionally requires high-temperature synthetic procedures of over 1,000 °C and complex processing techniques such as hot rolling1,2,3,4,5. One route to address the extreme synthetic requirements for high-entropy materials should involve the design of crystal structures with ionic bonding networks and low cohesive energies. Here we develop room-temperature-solution (20 °C) and low-temperature-solution (80 °C) synthesis procedures for a new class of metal halide perovskite high-entropy semiconductor (HES) single crystals. Due to the soft, ionic lattice nature of metal halide perovskites, these HES single crystals are designed on the cubic Cs2MCl6 (M=Zr4+, Sn4+, Te4+, Hf4+, Re4+, Os4+, Ir4+ or Pt4+) vacancy-ordered double-perovskite structure from the self-assembly of stabilized complexes in multi-element inks, namely free Cs+ cations and five or six different isolated [MCl6]2– anionic octahedral molecules well-mixed in strong hydrochloric acid. The resulting single-phase single crystals span two HES families of five and six elements occupying the M-site as a random alloy in near-equimolar ratios, with the overall Cs2MCl6 crystal structure and stoichiometry maintained. The incorporation of various [MCl6]2– octahedral molecular orbitals disordered across high-entropy five- and six-element Cs2MCl6 single crystals produces complex vibrational and electronic structures with energy transfer interactions between the confined exciton states of the five or six different isolated octahedral molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic design of high-entropy five- and six-element Cs2MX6 single crystals.
Fig. 2: Phase identification of five- and six-element high-entropy perovskite single crystals.
Fig. 3: Elemental analysis of high-entropy perovskite single crystals to confirm incorporation of five or six elements on the M-site.
Fig. 4: Highly resolved structural determination of the absolute configuration of M-site metal centres in high-entropy perovskite single crystals.
Fig. 5: Confirmation of the disordered nature of the five or six different [MCl6]2– octahedral complexes throughout single-phase, high-entropy perovskite systems with no microstructural grain formation.
Fig. 6: Optoelectronic behaviour of high-entropy perovskite single crystals.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information, and are available from the corresponding author on reasonable request. The crystallographic information files have also been deposited in the Inorganic Crystal Structure Database under reference nos. CSD 2216614–2216620, 2216624, 2216626, 2216627 and 2216636–2216643. These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/, or by emailing data_request@ccdc.cam.ac.uk.

References

  1. Liu, D. et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science 378, 978–983 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Jin, K. et al. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, R.-Z., Gucci, F., Zhu, H., Chen, K. & Reece, M. J. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg. Chem. 57, 13027–13033 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Stolze, K., Tao, J., von Rohr, F. O., Kong, T. & Cava, R. J. Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd high-entropy alloy superconductors on a CsCl-type lattice. Chem. Mater. 30, 906–914 (2018).

    Article  CAS  Google Scholar 

  5. Nguyen, T. X., Liao, Y., Lin, C., Su, Y. & Ting, J. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 31, 2101632 (2021).

    Article  CAS  Google Scholar 

  6. Roychowdhury, S., Ghosh, T., Arora, R., Waghmare, U. V. & Biswas, K. Stabilizing n‐type cubic GeSe by entropy‐driven alloying of AgBiSe2: ultralow thermal conductivity and promising thermoelectric performance. Angew. Chem. Int. Ed. Engl. 130, 15387–15391 (2018).

    Article  Google Scholar 

  7. Deng, Z. et al. Semiconducting high-entropy chalcogenide alloys with ambi-ionic entropy stabilization and ambipolar doping. Chem. Mater. 32, 6070–6077 (2020).

    Article  CAS  Google Scholar 

  8. Luo, Y. et al. High thermoelectric performance in the new cubic semiconductor AgSnSbSe3 by high-entropy engineering. J. Am. Chem. Soc. 142, 15187–15198 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, Z., Bei, H., Pharr, G. M. & George, E. P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428–441 (2014).

    Article  CAS  Google Scholar 

  10. Rost, C. M., Rak, Z., Brenner, D. W. & Maria, J. Local structure of the MgxNixCoxCuxZnxO (x=0.2) entropy‐stabilized oxide: an EXAFS study. J. Am. Ceram. Soc. 100, 2732–2738 (2017).

    Article  CAS  Google Scholar 

  11. Jiang, S. et al. A new class of high-entropy perovskite oxides. Scr. Mater. 142, 116–120 (2018).

    Article  CAS  Google Scholar 

  12. Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Rombach, F. M., Haque, S. A. & Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 14, 5161–5190 (2021).

    Article  CAS  Google Scholar 

  14. Gao, M. et al. The making of a reconfigurable semiconductor with a soft ionic lattice. Matter 4, 3874–3896 (2021).

    Article  ADS  Google Scholar 

  15. Lai, M. et al. Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. Proc. Natl Acad. Sci. USA 115, 11929–11934 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Folgueras, M. C. et al. Ligand-free processable perovskite semiconductor ink. Nano Lett. 21, 8856–8862 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Folgueras, M. C. et al. Lattice dynamics and optoelectronic properties of vacancy-ordered double perovskite Cs2TeX6 (X=Cl, Br, I) single crystals. J. Phys. Chem. C 125, 25126–25139 (2021).

    Article  CAS  Google Scholar 

  19. Blancon, J.-C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9, 2254 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Barfüßer, A. et al. Confined excitons in spherical-like halide perovskite quantum dots. Nano Lett. 22, 8810–8817 (2022).

    Article  ADS  PubMed  Google Scholar 

  21. Baimuratov, A. S. & Högele, A. Valley-selective energy transfer between quantum dots in atomically thin semiconductors. Sci. Rep. 10, 16971 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kovalev, D. et al. Resonant electronic energy transfer from excitons confined in silicon nanocrystals to oxygen molecules. Phys. Rev. Lett. 89, 137401 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Yeh, J.-W., Chen, Y.-L., Lin, S.-J. & Chen, S.-K. High-entropy alloys – a new era of exploitation. Mater. Sci. Forum 560, 1–9 (2007).

    Article  CAS  Google Scholar 

  24. Zhang, R. et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 581, 283–287 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Gali, A. & George, E. P. Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74–78 (2013).

    Article  CAS  Google Scholar 

  26. Anand Sekhar, R., Samal, S., Nayan, N. & Bakshi, S. R. Microstructure and mechanical properties of Ti-Al-Ni-Co-Fe based high entropy alloys prepared by powder metallurgy route. J. Alloys Compd. 787, 123–132 (2019).

    Article  CAS  Google Scholar 

  27. Solari, S. F. et al. Stabilization of lead-reduced metal halide perovskite nanocrystals by high-entropy alloying. J. Am. Chem. Soc. 144, 5864–5870 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karim, M. M. S. et al. Anion distribution, structural distortion, and symmetry-driven optical band gap bowing in mixed halide Cs2SnX6 vacancy ordered double perovskites. Chem. Mater. 31, 9430–9444 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hendrickson, W. A., Smith, J. L. & Sheriff, S. Direct phase determination based on anomalous scattering. Methods Enzymol. 115, 41–55 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Evans, G. & Pettifer, R. F. CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra. J. Appl. Crystallogr. 34, 82–86 (2001).

    Article  CAS  Google Scholar 

  31. Luo, H., Li, Z. & Raabe, D. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7, 9892 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Zhong, Y. et al. Multi-dopant engineering in perovskite Cs2SnCl6: white light emitter and spatially luminescent heterostructure. Inorg. Chem. 60, 17357–17363 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Abfalterer, A. et al. Colloidal synthesis and optical properties of perovskite-inspired cesium zirconium halide nanocrystals. ACS Mater. Lett. 2, 1644–1652 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saeki, K., Fujimoto, Y., Koshimizu, M., Yanagida, T. & Asai, K. Comparative study of scintillation properties of Cs2HfCl6 and Cs2ZrCl6. Appl. Phys. Express 9, 042602 (2016).

    Article  ADS  Google Scholar 

  36. Wu, R., Liu, Y., Hu, S., Fu, P. & Xiao, Z. Red‐emitting perovskite variant Cs2PtCl6 phosphor: material design, luminous mechanism, and application in high‐color‐rendering white light‐emitting diodes. Adv. Opt. Mater. 10, 2201081 (2022).

    Article  CAS  Google Scholar 

  37. McCall, K. M., Morad, V., Benin, B. M. & Kovalenko, M. V. Efficient lone-pair-driven luminescence: structure–property relationships in emissive 5s2 metal halides. ACS Mater. Lett. 2, 1218–1232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chang, T. et al. Efficient energy transfer in Te4+-doped Cs2ZrCl6 vacancy-ordered perovskites and ultrahigh moisture stability via A-site Rb-alloying strategy. J. Phys. Chem. Lett. 12, 1829–1837 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. MacManus, J. P., Hogue, C. W., Marsden, B. J., Sikorska, M. & Szabo, A. G. Terbium luminescence in synthetic peptide loops from calcium-binding proteins with different energy donors. J. Biol. Chem. 265, 10358–10366 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Yun, C. S. et al. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J. Am. Chem. Soc. 127, 3115–3119 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Zeltmann, A. H., Matwiyoff, N. A. & Morgan, L. O. Nuclear magnetic resonance of oxygen-17 and chlorine-35 in aqueous hydrochloric acid solutions of cobalt(II). I. Line shifts and relative abundances of solution species. J. Phys. Chem. 72, 121–127 (1968).

    Article  CAS  Google Scholar 

  42. Brady, G. W., Robin, M. B. & Varimbi, J. The structure of ferric chloride in neutral and acid solutions. Inorg. Chem. 3, 1168–1173 (1964).

    Article  CAS  Google Scholar 

  43. Tan, Z. et al. Lead‐free perovskite variant solid solutions Cs2Sn1–xTexCl6: bright luminescence and high anti‐water stability. Adv. Mater. 32, 2002443 (2020).

    Article  CAS  Google Scholar 

  44. CrysAlisPro v.1.171.42.90a (Rigaku Corporation, 2022).

  45. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  46. Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 71, 3–8 (2015).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  47. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 71, 3–8 (2015).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  48. SAINT v.8.38A (Bruker AXS, Inc., 2012).

  49. APEX3 v.2017.3-0 (Bruker AXS, Inc., 2012).

  50. SADABS (Bruker AXS, Inc., 2017).

  51. Gaussian v.16, Revision C.01, Frisch, M. J. et al. (Gaussian, Inc., 2016).

  52. Gamelin, D. R. & Güdel, H. U. Spectroscopy and dynamics of Re4+ near-IR-to-visible luminescence upconversion. Inorg. Chem. 38, 5154–5164 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Khan, S. M., Patterson, H. H. & Engstrom, H. Multiple state luminescence for the d4 OsCl62– impurity ion in K2PtCl6 and Cs2ZrCl6 cubic crystals. Mol. Phys. 35, 1623–1636 (1978).

    Article  ADS  CAS  Google Scholar 

  54. Douglas, I. N. Optical spectra of IrCl62− in single crystals of Cs2ZrCl6, Cs2HfCl6, and K2SnCl6 at low temperatures. J. Chem. Phys. 51, 3066–3073 (1969).

    Article  ADS  CAS  Google Scholar 

  55. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  ADS  CAS  Google Scholar 

  56. Andrae, D., Häußermann, U., Dolg, M., Stoll, H. & Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77, 123–141 (1990).

    Article  CAS  Google Scholar 

  57. Sousa, S. F. et al. Comparative analysis of the performance of commonly available density functionals in the determination of geometrical parameters for zinc complexes. J. Comput. Chem. 30, 2752–2763 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Lin, J. et al. Thermochromic halide perovskite solar cells. Nat. Mater. 17, 261–267 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Lin, Z., Folgueras, M. C., Le, H. K. D., Gao, M. & Yang, P. Laser-accelerated phase transformation in cesium lead iodide perovskite. Matter 5, 1455–1465 (2022).

    Article  CAS  Google Scholar 

  60. Bischak, C. G. et al. Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. J. Phys. Chem. Lett. 9, 3998–4005 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Yang, S. et al. Novel lead-free material Cs2PtI6 with narrow bandgap and ultra-stability for Its photovoltaic application. ACS Appl. Mater. Interfaces 12, 44700–44709 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Ju, M.-G. et al. Earth-abundant nontoxic titanium(IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications. ACS Energy Lett. 3, 297–304 (2018).

    Article  CAS  Google Scholar 

  63. Sakai, N. et al. Solution-processed cesium hexabromopalladate(IV), Cs2PdBr6, for optoelectronic applications. J. Am. Chem. Soc. 139, 6030–6033 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Xu, Y. et al. Zero-dimensional Cs2TeI6 perovskite: solution-processed thick films with high X-ray sensitivity. ACS Photonics 6, 196–203 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-05CH11231 within the Fundamentals of Semiconductor Nanowire Program (KCPY23). The authors thank N. S. Settineri at UC Berkeley and S. J. Teat at the Advanced Light Source for their assistance in SCXRD and SCXRD–MAD measurements; A. J. Gubser for helpful discussions in regard to SEM–BSE imaging and EBSD measurements; and J. Grimsich for providing access to the various optical microscopes in the Earth and Planetary Sciences Petrographic Microscope Resource Center. Single-crystal X-ray diffraction studies were performed at the UC Berkeley College of Chemistry Small Molecule X-ray Crystallography Facility and at beamline 12.2.1 of the Advanced Light Source, a US DOE Office of Science User Facility at Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231. Ultra-low-frequency Raman spectroscopy was performed at the Stanford Nano Shared Facilities, supported by the National Science Foundation under award no. ECCS-2026822. M.C.F. acknowledges support from the Kavli ENSI Philomathia Graduate Student Fellowship. J.J. acknowledges fellowship support from Suzhou Industrial Park.

Author information

Authors and Affiliations

Authors

Contributions

M.C.F. and P.Y. conceived the idea. M.C.F., Y.J. and P.Y. designed the research. M.C.F. and Y.J. led the study and conducted materials synthesis, major characterization and data analysis including PXRD, SCXRD, SEM imaging, SEM–EDX, SEM–EBSD, ICP–AES, Raman, UV-visible absorption, photoluminescence and theoretical calculations. Y.J. and J.J. conducted SCXRD–MAD experiments. M.C.F. conducted X-ray fluorescence analysis. J.J. analysed SCXRD–MAD datasets. M.C.F., Y.J. and P.Y. wrote the manuscript. All authors discussed the results and revised the manuscript.

Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Sections 1–4 and a Supplementary Note, including Figs. 1–57 and Tables 1–19.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Folgueras, M.C., Jiang, Y., Jin, J. et al. High-entropy halide perovskite single crystals stabilized by mild chemistry. Nature 621, 282–288 (2023). https://doi.org/10.1038/s41586-023-06396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06396-8

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing