Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional-group translocation of cyano groups by reversible C–H sampling

Abstract

Chemical transformations that introduce, remove or manipulate functional groups are ubiquitous in synthetic chemistry1. Unlike conventional functional-group interconversion reactions that swap one functionality for another, transformations that alter solely the location of functional groups are far less explored. Here, by photocatalytic, reversible C–H sampling, we report a functional-group translocation reaction of cyano (CN) groups in common nitriles, allowing for the direct positional exchange between a CN group and an unactivated C−H bond. The reaction shows high fidelity for 1,4-CN translocation, frequently contrary to inherent site selectivity in conventional C−H functionalizations. We also report the direct transannular CN translocation of cyclic systems, providing access to valuable structures that are non-trivial to obtain by other methods. Making use of the synthetic versatility of CN and a key CN translocation step, we showcase concise syntheses of building blocks of bioactive molecules. Furthermore, the combination of C–H cyanation and CN translocation allows access to unconventional C–H derivatives. Overall, the reported reaction represents a way to achieve site-selective C–H transformation reactions without requiring a site-selective C–H cleavage step.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Direct FG translocation to unactivated C–H sites with no accompanying variations of the molecule.
Fig. 2: Design and optimization of the CN translocation reaction.
Fig. 3: Substrate scope with linear nitriles.
Fig. 4: Direct transannular CN translocation.
Fig. 5: Applications of the direct CN translocation reaction.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. Additional data are available from the corresponding author upon request. Metrical parameters for the structures of 83 and 91 are available free of charge from the Cambridge Crystallographic Data Centre under reference numbers CCDC 2238601 and 2238605.

References

  1. Smith, M. B. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 8th edn (John Wiley & Sons, 2020).

  2. Lam, N. Y. S., Wu, K. & Yu, J.-Q. Advancing the logic of chemical synthesis: C−H activation as strategic and tactical disconnections for C−C bond construction. Angew. Chem. Int. Ed. 60, 15767–15790 (2021).

    Article  CAS  Google Scholar 

  3. Rogge, T. et al. C–H activation. Nat. Rev. Methods Primer 1, 43 (2021).

    Article  CAS  Google Scholar 

  4. Bellotti, P., Huang, H.-M., Faber, T. & Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 123, 4237–4352 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Sommer, H., Juliá-Hernández, F., Martin, R. & Marek, I. Walking metals for remote functionalization. ACS Cent. Sci. 4, 153–165 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Janssen‐Müller, D., Sahoo, B., Sun, S. & Martin, R. Tackling remote sp3 C−H functionalization via Ni‐catalyzed “chain‐walking” reactions. Isr. J. Chem. 60, 195–206 (2020).

    Article  Google Scholar 

  7. Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).

    Article  PubMed  Google Scholar 

  8. Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  9. Brown, C. A. & Yamashita, A. Saline hydrides and superbases in organic reactions. IX. Acetylene zipper. Exceptionally facile contrathermodynamic multipositional isomeriazation of alkynes with potassium 3-aminopropylamide. J. Am. Chem. Soc. 97, 891–892 (1975).

    Article  CAS  Google Scholar 

  10. Zhao, K. & Knowles, R. R. Contra-thermodynamic positional isomerization of olefins. J. Am. Chem. Soc. 144, 137–144 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Occhialini, G., Palani, V. & Wendlandt, A. E. Catalytic, contra-thermodynamic positional alkene isomerization. J. Am. Chem. Soc. 144, 145–152 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Wu, B., Szymański, W., Heberling, M. M., Feringa, B. L. & Janssen, D. B. Aminomutases: mechanistic diversity, biotechnological applications and future perspectives. Trends Biotechnol. 29, 352–362 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Matsushita, K., Takise, R., Muto, K. & Yamaguchi, J. Ester dance reaction on the aromatic ring. Sci. Adv. 6, eaba7614 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Schnürch, M., Spina, M., Khan, A. F., Mihovilovic, M. D. & Stanetty, P. Halogen dance reactions—a review. Chem. Soc. Rev. 36, 1046–1057 (2007).

    Article  PubMed  Google Scholar 

  15. Perego, C. & Ingallina, P. Combining alkylation and transalkylation for alkylaromatic production. Green Chem. 6, 274 (2004).

    Article  CAS  Google Scholar 

  16. Wu, Z., Xu, X., Wang, J. & Dong, G. Carbonyl 1,2-transposition through triflate-mediated α-amination. Science 374, 734–740 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Meystre, C. et al. Neue substitutionsreaktionen bei steroiden. Experientia 17, 475–480 (1961).

    Article  CAS  PubMed  Google Scholar 

  18. Kalvoda, J. A new type of intramolecular group-transfer in steroid photochemistry. A contribution to the mechanism of the oxidative cyanohydrin–cyano–ketone rearrangement. J. Chem. Soc. D 1002–1003 (1970).

  19. Watt, D. S. A reiterative functionalization of unactivated carbon-hydrogen bonds. Photolysis of α-peracetoxynitriles. J. Am. Chem. Soc. 98, 271–273 (1976).

    Article  CAS  Google Scholar 

  20. Wang, M., Huan, L. & Zhu, C. Cyanohydrin-mediated cyanation of remote unactivated C(sp3)–H bonds. Org. Lett. 21, 821–825 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Wu, X. et al. Tertiary-alcohol-directed functionalization of remote C(sp3)−H bonds by sequential hydrogen atom and heteroaryl migrations. Angew. Chem. Int. Ed. 57, 1640–1644 (2018).

    Article  CAS  Google Scholar 

  22. Wu, X. & Zhu, C. Radical-mediated remote functional group migration. Acc. Chem. Res. 53, 1620–1636 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Li, W., Xu, W., Xie, J., Yu, S. & Zhu, C. Distal radical migration strategy: an emerging synthetic means. Chem. Soc. Rev. 47, 654–667 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, X., Ma, Z., Feng, T. & Zhu, C. Radical-mediated rearrangements: past, present, and future. Chem. Soc. Rev. 50, 11577–11613 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Li, Z.-L., Li, X.-H., Wang, N., Yang, N.-Y. & Liu, X.-Y. Radical-mediated 1,2-formyl/carbonyl functionalization of alkenes and application to the construction of medium-sized rings. Angew. Chem. Int. Ed. 55, 15100–15104 (2016).

    Article  CAS  Google Scholar 

  26. Friese, F. W., Mück-Lichtenfeld, C. & Studer, A. Remote C−H functionalization using radical translocating arylating groups. Nat. Commun. 9, 2808 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  27. Wu, W.-B., Yu, J.-S. & Zhou, J. Catalytic enantioselective cyanation: recent advances and perspectives. ACS Catal. 10, 7668–7690 (2020).

    Article  CAS  Google Scholar 

  28. Zhang, H., Su, X. & Dong, K. Recent progress in transition-metal-catalyzed hydrocyanation of nonpolar alkenes and alkynes. Org. Biomol. Chem. 18, 391–399 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Schörgenhumer, J. & Waser, M. New strategies and applications using electrophilic cyanide-transfer reagents under transition metal-free conditions. Org. Chem. Front. 3, 1535–1540 (2016).

    Article  Google Scholar 

  30. Wang, F., Chen, P. & Liu, G. Copper-catalysed asymmetric radical cyanation. Nat. Synth. 1, 107–116 (2022).

    Article  ADS  Google Scholar 

  31. Beckwith, A. L. J., O’Shea, D. M., Gerba, S. & Westwood, S. W. Cyano or acyl group migration by consecutive homolytic addition and β-fission. J. Chem. Soc., Chem. Commun. 666–667 (1987).

  32. Wu, Z., Ren, R. & Zhu, C. Combination of a cyano migration strategy and alkene difunctionalization: the elusive selective azidocyanation of unactivated olefins. Angew. Chem. Int. Ed. 55, 10821–10824 (2016).

    Article  CAS  Google Scholar 

  33. Wang, N. et al. Catalytic diverse radical-mediated 1,2-cyanofunctionalization of unactivated alkenes via synergistic remote cyano migration and protected strategies. Org. Lett. 18, 6026–6029 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Roberts, B. P. Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. Chem. Soc. Rev. 28, 25–35 (1999).

    Article  CAS  Google Scholar 

  35. Cao, H., Tang, X., Tang, H., Yuan, Y. & Wu, J. Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis. Chem. Catal. 1, 523–598 (2021).

    Article  CAS  Google Scholar 

  36. Capaldo, L., Ravelli, D. & Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C–H bonds elaboration. Chem. Rev. 122, 1875–1924 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Y. et al. Epimerization of tertiary carbon centers via reversible radical cleavage of unactivated C(sp3)–H bonds. J. Am. Chem. Soc. 140, 9678–9684 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Shen, Y., Funez-Ardoiz, I., Schoenebeck, F. & Rovis, T. Site-selective α-C–H functionalization of trialkylamines via reversible hydrogen atom transfer catalysis. J. Am. Chem. Soc. 143, 18952–18959 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kattamuri, P. V. & West, J. G. Hydrogenation of alkenes via cooperative hydrogen atom transfer. J. Am. Chem. Soc. 142, 19316–19326 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Kuang, Y. et al. Visible light driven deuteration of formyl C–H and hydridic C(sp3)–H bonds in feedstock chemicals and pharmaceutical molecules. Chem. Sci. 11, 8912–8918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, Y., Carder, H. M. & Wendlandt, A. E. Synthesis of rare sugar isomers through site-selective epimerization. Nature 578, 403–408 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Oswood, C. J. & MacMillan, D. W. C. Selective isomerization via transient thermodynamic control: dynamic epimerization of trans to cis diols. J. Am. Chem. Soc. 144, 93–98 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Y.-A. et al. Stereochemical editing logic powered by the epimerization of unactivated tertiary stereocenters. Science 378, 383–390 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Jasperse, C. P., Curran, D. P. & Fevig, T. L. Radical reactions in natural product synthesis. Chem. Rev. 91, 1237–1286 (1991).

    Article  CAS  Google Scholar 

  45. Jaynes, B. S. & Hill, C. L. Selective ethylation and vinylation of alkanes via polyoxotungstate photocatalyzed radical addition reactions. J. Am. Chem. Soc. 115, 12212–12213 (1993).

    Article  CAS  Google Scholar 

  46. Waele, V. D., Poizat, O., Fagnoni, M., Bagno, A. & Ravelli, D. Unraveling the key features of the reactive state of decatungstate anion in hydrogen atom transfer (HAT) photocatalysis. ACS Catal. 6, 7174–7182 (2016).

    Article  CAS  Google Scholar 

  47. Laudadio, G. et al. C(sp3)–H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow. Science 369, 92–96 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Curran, D. P. & Seong, C. M. Radical annulation reactions of allyl iodomalononitriles. Tetrahedron 48, 2175–2190 (1992).

    Article  CAS  Google Scholar 

  49. Wan, Z. et al. Heteroaryldihydropyrimidine derivatives and methods of treating hepatitis B infection. Patent WO 2019001420A1 (2019).

  50. Sampathi Perera, K. L. I. et al. Synthesis and evaluation of 4-cycloheptylphenols as selective estrogen receptor-β agonists (SERBAs). Eur. J. Med. Chem. 157, 791–804 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the Natural Science Foundation of China (22201015), BNLMS and Peking University Li Ge Zhao Ning Youth Research Fund for Life Sciences (LGZNQN202204). We thank X. Zhang (PKU) and H. Fu (PKU) for assistance with NMR spectroscopy; Y. Qiu (PKU) for assistance with X-ray crystallography; and G. Dong (Uchicago) and X.-Y. Liu (SUSTech) for discussions and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Y.X. proposed the transformation. K.C., Q.Z., L.X., Z.X. and Y.X. conceived and conducted the experimental investigation. K.C., Q.Z. and Y.X. wrote the paper. J.W. and Y.X. directed the research. K.C. and Q.Z. contributed equally.

Corresponding author

Correspondence to Yan Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Additional substrate scope.

All yields are isolated yields. General condition: NaDT (2 mol%), T1 (40 mol%), MeCN:acetone (1:1, 0.375 M), N2 atmosphere, 365 nm LED irradiation. a Using TBPDT (3 mol%) instead of NaDT and 5 mol% of T1. For detailed experimental procedures, see Section 4 of Supplementary Information.

Extended Data Fig. 2 Additional applications of the direct CN translocation reaction.

a. An exemplary case of using CN translocation reactions to promote continuous C–C bond construction. b. Examples of expedited synthesis of cycloheptane building blocks using CN translocation reactions. a Mixed with ca. 10% of inseparable impurity and directly used in the next step. For details, see Section 5 of Supplementary Information.

Supplementary information

Supplementary Information

This Supplementary Information file contains the following 9 sections: 1. General consideration; 2. Substrate synthesis; 3. The optimal reaction condition and study on the impact of reaction parameters; 4. Substrate scope study; 5. Further study on the direct CN translocation reaction; 6. Additional analysis of the reaction design, deuterium labelling experiments, and further studies; 7. XRD analysis of compounds S33, S36, 83 and 91; 8. References; and 9. Spectra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Zeng, Q., Xie, L. et al. Functional-group translocation of cyano groups by reversible C–H sampling. Nature 620, 1007–1012 (2023). https://doi.org/10.1038/s41586-023-06347-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06347-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing