Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metallaphotocatalytic synthesis of anilines through tandem C–N transposition and C–H alkylation of alkylamines

Abstract

Alkylamines have a range of applications including as reagents in organic synthesis and as bioactive compounds in medicinal chemistry. Methods for the synthesis of alkylamines, however, typically suffer from low availability or inaccessibility of key reaction components and uncontrollable selectivity. While photocatalytic two-component reactions have become versatile strategies for the synthesis of alkylamines, multicomponent variants remain underdeveloped. Here we describe a metallaphotoredox-promoted three-component amination reaction using tertiary alkylamines, nitroarenes and carboxylic acids to give N-alkyl aniline products. The utility of this three-component approach is highlighted through the availability and broad scope of the reaction substrates and the application to the expedited synthesis of drug molecules and intermediates. Mechanistic investigations reveal this chemo- and regioselective transformation probably proceeds through a formal amine group transposition and C–H alkylation of a tertiary alkylamine substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The development of selective multicomponent construction of N-alkyl anilines.
Fig. 2: Mechanistic hypothesis of metallaphotoredox-catalysed amination using nitroarenes, tertiary alkylamines and RAEs.
Fig. 3: Scope of tertiary alkylamines.
Fig. 4: Synthesis of N-alkyl anilines towards the synthesis of drug-like molecules.
Fig. 5: Mechanistic study of the three-component amination protocol.

Similar content being viewed by others

Data availability

The experimental and analytical procedures and full spectral data are available in the supplementary materials. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2209594 (59) and 2247663 (86).

References

  1. Ricci, A. & Bernardi, L. Methodologies in Amine Synthesis: Challenges and Applications (Wiley, 2021).

  2. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    CAS  PubMed  Google Scholar 

  3. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    CAS  PubMed  Google Scholar 

  4. Talele, T. T. Opportunities for tapping into three-dimensional chemical space through a quaternary carbon. J. Med. Chem. 63, 13291–13315 (2020).

    CAS  PubMed  Google Scholar 

  5. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    CAS  PubMed  Google Scholar 

  6. Barreiro, E. J., Kümmerle, A. E. & Fraga, C. A. M. The methylation effect in medicinal chemistry. Chem. Rev. 111, 5215–5246 (2011).

    CAS  PubMed  Google Scholar 

  7. Schönherr, H. & Cernak, T. Profound methyl effects in drug discovery and a call for new C–H methylation reactions. Angew. Chem. Int. Ed. 52, 12256–12267 (2013).

    Google Scholar 

  8. Afanasyev, O. I., Kuchuk, E., Usanov, D. L. & Chusov, D. Reductive amination in the synthesis of pharmaceuticals. Chem. Rev. 119, 11857–11911 (2019).

    CAS  PubMed  Google Scholar 

  9. Monnier, F. & Taillefer, M. Catalytic C–C, C–N, and C–O Ullmann-type coupling reactions. Angew. Chem. Int. Ed. 48, 6954–6971 (2009).

    CAS  Google Scholar 

  10. Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C−N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakamura, Y. et al. Design and optimization of novel (2S,4S,5S)-5-amino-6-(2,2-dimethyl-5-oxo-4-phenylpiperazin-1-yl)-4-hydroxy-2-isopropylhexanamides as renin inhibitors. Bioorg. Med. Chem. Lett. 22, 4561–4566 (2012).

    CAS  Google Scholar 

  12. Trowbridge, A., Walton, S. M. & Gaunt, M. J. New strategies for the transition-metal catalyzed synthesis of aliphatic amines. Chem. Rev. 120, 2613–2692 (2020).

    CAS  PubMed  Google Scholar 

  13. He, C., Whitehurst, W. G. & Gaunt, M. J. Palladium-catalyzed C(sp3)–H bond functionalization of aliphatic amines. Chem 5, 1031–1058 (2019).

    CAS  Google Scholar 

  14. Huang, L., Arndt, M., Gooßen, K., Heydt, H. & Gooßen, L. J. Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev. 115, 2596–2697 (2015).

    CAS  PubMed  Google Scholar 

  15. Liu, R. Y. & Buchwald, S. L. CuH-catalyzed olefin functionalization: from hydroamination to carbonyl addition. Acc. Chem. Res. 53, 1229–1243 (2020).

    CAS  PubMed Central  Google Scholar 

  16. Murray, P. R. D. et al. Photochemical and electrochemical applications of proton-coupled electron transfer in organic synthesis. Chem. Rev. 122, 2017–2291 (2022).

    CAS  PubMed  Google Scholar 

  17. Holmberg-Douglas, N. & Nicewicz, D. A. Photoredox-catalyzed C−H functionalization reactions. Chem. Rev. 122, 1925–2016 (2022).

    CAS  PubMed  Google Scholar 

  18. Leitch, J. A., Rossolini, T., Rogova, T., Maitland, J. A. P. & Dixon, D. J. α‑Amino radicals via photocatalytic single-electron reduction of imine derivatives. ACS Catal. 10, 2009–2025 (2020).

  19. Garrido-Castro, A. F., Maestro, M. C. & Alemán, J. α-Functionalization of imines via visible light photoredox catalysis. Catalysts 10, 562 (2020).

  20. Kwon, K., Simons, R. T., Nandakumar, M. & Roizen, J. L. Strategies to generate nitrogen-centered radicals that may rely on photoredox catalysis: development in reaction methodology and applications in organic synthesis. Chem. Rev. 122, 2353–2428 (2022).

    CAS  PubMed  Google Scholar 

  21. Pratley, C., Fenner, S. & Murphy, J. A. Nitrogen-centered radicals in functionalization of sp2 systems: generation, reactivity, and applications in synthesis. Chem. Rev. 122, 8181–8260 (2022).

    CAS  PubMed  Google Scholar 

  22. Rivas, M., Palchykov, V., Jia, X. & Gevorgyan, V. Recent advances in visible light induced C(sp3)–N bond formation. Nat. Rev. Chem. 6, 544–561 (2022).

    PubMed Central  Google Scholar 

  23. Trowbridge, A., Reich, D. & Gaunt, M. J. Multicomponent synthesis of tertiary alkylamines by photocatalytic olefin-hydroaminoalkylation. Nature 561, 522–527 (2018).

    CAS  PubMed  Google Scholar 

  24. Kumar, R., Flodén, N. J., Whitehurst, W. G. & Gaunt, M. J. A general carbonyl alkylative amination for tertiary amine synthesis. Nature 581, 415–420 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang, H., Seidler, G. & Studer, A. Carboamination of unactivated alkenes through three-component radical conjugate addition. Angew. Chem. Int. Ed. 131, 16680–16684 (2019).

    Google Scholar 

  26. Gui, J. et al. Practical olefin hydroamination with nitroarenes. Science 348, 886–891 (2015).

    CAS  Google Scholar 

  27. Nappi, M., Hofer, A., Balasubramanian, S. & Gaunt, M. J. Selective chemical functionalization at N6-methyladenosine residues in DNA enabled by visible-light-mediated photoredox catalysis. J. Am. Chem. Soc. 142, 21484–21492 (2020).

    CAS  PubMed  Google Scholar 

  28. Ouyang, K., Hao, W., Zhang, W.-X. & Xi, Z. Transition-metal-catalyzed cleavage of C–N single bonds. Chem. Rev. 115, 12045–12090 (2015).

    CAS  PubMed  Google Scholar 

  29. Wang, Q., Su, Y., Li, L. & Huang, H. Transition-metal catalysed C–N bond activation. Chem. Soc. Rev. 45, 1257–1272 (2016).

    CAS  PubMed  Google Scholar 

  30. Chen, C., Liu, W., Liu, B., Zhou, P. & Tan, H. Acylation of arylamines with triethylamine derivatives in combination with tert-butyl hydroperoxide. Asian J. Org. Chem. 8, 470–474 (2019).

    CAS  Google Scholar 

  31. Gao, Q. et al. Deaminative cyclization of tertiary amines for the synthesis of 2‑arylquinoline derivatives with a nonsubstituted vinylene fragment. Org. Lett. 25, 109–114 (2023).

    CAS  PubMed  Google Scholar 

  32. Thullen, S. M. & Rovis, T. A mild hydroaminoalkylation of conjugated dienes using a unified cobalt and photoredox catalytic system. J. Am. Chem. Soc. 139, 15504–15508 (2017).

    CAS  PubMed  Google Scholar 

  33. Shen, Y., Funez-Ardoiz, I., Schoenebeck, F. & Rovis, T. Site-selective α‑C−H functionalization of trialkylamines via reversible hydrogen atom transfer catalysis. J. Am. Chem. Soc. 143, 18952–18959 (2021).

    CAS  PubMed Central  Google Scholar 

  34. Shen, Y. & Rovis, T. Late-stage N‑Me selective arylation of trialkylamines enabled by Ni/photoredox dual catalysis. J. Am. Chem. Soc. 143, 16364–16369 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mao, R., Frey, A., Balon, J. & Hu, X. Decarboxylative C(sp3)–N cross-coupling via synergetic photoredox and copper catalysis. Nat. Catal. 1, 120–126 (2018).

    CAS  Google Scholar 

  36. Mao, R., Balon, J. & Hu, X. Cross-coupling of alkyl redox-active esters with benzophenone imines: tandem photoredox and copper catalysis. Angew. Chem. Int. Ed. 57, 9501–9504 (2018).

    CAS  Google Scholar 

  37. Wang, S. et al. Decarboxylative tandem C–N coupling with nitroarenes via SH2 mechanism. Nat. Commun. 13, 2432 (2022).

    CAS  PubMed Central  Google Scholar 

  38. Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    CAS  PubMed  Google Scholar 

  39. Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, Y.-F., Lin, J.-H. & Xiao, J.-C. Starting from styrene: a unified protocol for hydrotrifluoromethylation of diversified alkenes. Org. Lett. 23, 9277–9282 (2021).

    CAS  PubMed  Google Scholar 

  41. Wang, B., Zhou, M.-J. & Zhou, Q.-L. Visible-light-induced α,γ-C(sp3)–H difunctionalization of piperidines. Org. Lett. 24, 2894–2898 (2022).

    CAS  PubMed  Google Scholar 

  42. Yi, M.-J. et al. Organic photoredox catalytic α-C(sp3)–H phosphorylation of saturated aza-heterocycles. Chem. Commun. 57, 13158–13161 (2021).

    CAS  Google Scholar 

  43. Maldotti, A. et al. Photochemical and photocatalytic reduction of nitrobenzene in the presence of cyclohexene. J. Photochem. Photobiol. A 133, 129–133 (2000).

    CAS  Google Scholar 

  44. Beatty, J. W. & Stephenson, C. R. J. Amine functionalization via oxidative photoredox catalysis: methodology development and complex molecule synthesis. Acc. Chem. Res. 48, 1474–1484 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, J.-J., Yang, J.-C., Guo, L.-N. & Duan, X.-H. Visible-light-mediated dual decarboxylative coupling of redox-active esters with α,β-unsaturated carboxylic acids. Chem. Eur. J. 23, 10259–10263 (2017).

  46. Xiao, J., He, Y., Ye, F. & Zhu, S. Remote sp3 C–H amination of alkenes with nitroarenes. Chem 4, 1645–1657 (2018).

    CAS  Google Scholar 

  47. Norambuena, E., Olea-Azar, C., Rufs, A. M. & Encinas, M. V. Photoreduction of 4-substituted nitrobenzenes by amines. Phys. Chem. Chem. Phys. 6, 1230–1235 (2004).

    CAS  Google Scholar 

  48. Chandrashekhar, V. G., Baumann, W., Beller, M. & Jagadeesh, R. V. Nickel-catalyzed hydrogenative coupling of nitriles and amines for general amine synthesis. Science 376, 1433–1441 (2022).

    CAS  PubMed  Google Scholar 

  49. Miyabe, H., Yoshioka, E. & Kohtani, S. Progress in intermolecular carbon radical addition to imine derivatives. Curr. Org. Chem. 14, 1254–1264 (2010).

    CAS  Google Scholar 

  50. Zhao, X. et al. Divergent aminocarbonylations of alkynes enabled by photoredox/nickel dual catalysis. Angew. Chem. Int. Ed. 60, 26511–26517 (2021).

    CAS  Google Scholar 

  51. Jia, J., Lefebvre, Q. & Rueping, M. Reductive coupling of imines with redox-active esters by visible light photoredox organocatalysis. Org. Chem. Front. 7, 602–608 (2020).

    CAS  Google Scholar 

  52. Lv, X.-Y., Abrams, R. & Martin, R. Dihydroquinazolinones as adaptative C(sp3) handles in arylations and alkylations via dual catalytic C–C bond-functionalization. Nat. Commun. 13, 2394 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lucet, D., Le Gall, T. & Mioskowski, C. The chemistry of vicinal diamines. Angew. Chem. Int. Ed. 37, 2580–2627 (1998).

    CAS  Google Scholar 

  54. Jin, C., Decker, A. M., Harris, D. L. & Blough, B. E. Effect of substitution on the aniline moiety of the GPR88 agonist 2‑PCCA: synthesis, structure–activity relationships, and molecular modeling studies. ACS Chem. Neurosci. 7, 1418–1432 (2016).

    CAS  Google Scholar 

  55. Leiva, R. et al. Aniline-based inhibitors of influenza H1N1 virus acting on hemagglutinin-mediated fusion. J. Med. Chem. 61, 98–118 (2018).

    CAS  PubMed  Google Scholar 

  56. Vashishtha, A. & Vashishtha, M. Naphthylalkylamines and their compositions and methods of regulating cancer related disorders and diseases. PCT Int. Appl. WO 2017070052 (2017).

  57. Blaser, H.-U. A golden boost to an old reaction. Science 313, 312–313 (2006).

    CAS  PubMed  Google Scholar 

  58. Su, Y.-L. & Doyle, M. P. Application of α-aminoalkyl radicals as reaction activators. Synthesis 54, 545–554 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (nos. 21971186 (C.W.C.), 22271216 (C.W.C.) and 21961142015 (J.-A.M.)), the National Key Research and Development Program of China (no. 2019YFA0905100, J.-A.M.) and the Tianjin Municipal Science & Technology Commission (20JCYBJ00900, C.W.C.) for financial support. We thank the research group of Y.-L. Lei (Tianjin University) for assistance in conducting the UV–vis spectroscopic analysis.

Author information

Authors and Affiliations

Authors

Contributions

Z.-W.Z. and C.W.C. discovered the reactions. Z.-W.Z. performed the reaction optimizations and studied the reaction scope and synthetic utility. Z.-W.Z. and Z.F. studied the reaction mechanisms. C.W.C. wrote the manuscript with help from Z.-W.Z., Z.F. and J.-A.M. C.W.C. and J.-A.M. initiated the project, designed the experiments and directed the research.

Corresponding authors

Correspondence to Jun-An Ma or Chi Wai Cheung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Nicholas Chiappini, Leifeng Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28 and Table 1.

Supplementary Data 1

Crystallographic data for 59 (CCDC 2209594).

Supplementary Data 2

Crystallographic data for 86 (CCDC 2247663).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZW., Feng, Z., Ma, JA. et al. Metallaphotocatalytic synthesis of anilines through tandem C–N transposition and C–H alkylation of alkylamines. Nat. Synth 2, 1171–1183 (2023). https://doi.org/10.1038/s44160-023-00370-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00370-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing