Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Future emergence of new ecosystems caused by glacial retreat

Abstract

Glacier shrinkage and the development of post-glacial ecosystems related to anthropogenic climate change are some of the fastest ongoing ecosystem shifts, with marked ecological and societal cascading consequences1,2,3,4,5,6. Yet, no complete spatial analysis exists, to our knowledge, to quantify or anticipate this important changeover7,8. Here we show that by 2100, the decline of all glaciers outside the Antarctic and Greenland ice sheets may produce new terrestrial, marine and freshwater ecosystems over an area ranging from the size of Nepal (149,000 ± 55,000 km2) to that of Finland (339,000  ±  99,000  km2). Our analysis shows that the loss of glacier area will range from 22 ± 8% to 51 ± 15%, depending on the climate scenario. In deglaciated areas, the emerging ecosystems will be characterized by extreme to mild ecological conditions, offering refuge for cold-adapted species or favouring primary productivity and generalist species. Exploring the future of glacierized areas highlights the importance of glaciers and emerging post-glacial ecosystems in the face of climate change, biodiversity loss and freshwater scarcity. We find that less than half of glacial areas are located in protected areas. Echoing the recent United Nations resolution declaring 2025 as the International Year of Glaciers’ Preservation9 and the Global Biodiversity Framework10, we emphasize the need to urgently and simultaneously enhance climate-change mitigation and the in situ protection of these ecosystems to secure their existence, functioning and values.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of glacier retreat and the emergence of post-glacial ecosystems.
Fig. 2: Future evolution of glacial and deglaciated areas worldwide.
Fig. 3: Evolution of glacial surface area and composition of emerging deglaciated areas from 2020 to 2100.
Fig. 4: Glaciers and protected areas.

Similar content being viewed by others

Data availability

All the modelled data produced in this study are available at Zenodo (https://doi.org/10.5281/zenodo.8070887).

Code availability

The code developed to process and analyse the data produced, and to generate the figures and tables in this Article, are available at Zenodo (https://doi.org/10.5281/zenodo.8070887).

References

  1. Huss, M. et al. Toward mountains without permanent snow and ice. Earths Future 5, 418–435 (2017).

    Article  ADS  Google Scholar 

  2. Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    Article  PubMed  Google Scholar 

  4. Immerzeel, W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. IPCC. Climate Change 2021: The Physical Science Basis (Cambridge Univ. Press, 2021).

  6. Rounce, D. et al. Global glacier change in the 21st century: every increase in temperature matters. Science 379, 78–83 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ficetola, G. F. et al. Dynamics of ecological communities following current retreat of glaciers. Annu. Rev. Ecol. Evol. Syst. 52, 405–426 (2021).

    Article  Google Scholar 

  8. Zimmer, A., Beach, T., Klein, J. A., & Recharte Bullard, J. The need for stewardship of lands exposed by deglaciation from climate change. Wiley Interdiscip. Rev. Clim. Change 13, e753 (2022).

    Article  Google Scholar 

  9. United Nations. International Year of Glaciers’ Preservation, 2025: Revised Draft Resolution (United Nations, 2022).

  10. Convention on Biological Diversity. Nations Adopt Four Goals, 23 Targets for 2030 in Landmark UN Biodiversity Agreement (19 December 2022).

  11. Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stibal, M. et al. Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nat. Ecol. Evol. 4, 686–687 (2020).

    Article  PubMed  Google Scholar 

  13. Gobbi, M. et al. Vanishing permanent glaciers: climate change is threatening a European Union habitat (code 8340) and its poorly known biodiversity. Biodivers. Conserv. 30, 2267–2276 (2021).

    Article  Google Scholar 

  14. Folke, C. et al. Our future in the Anthropocene biosphere. Ambio 50, 834–869 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pörtner, H. O. et al. Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change. Zenodo v.5 https://doi.org/10.5281/zenodo.4659159 (2021).

  16. Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Roe, G. H., Christian, J. E. & Marzeion, B. On the attribution of industrial-era glacier mass loss to anthropogenic climate change. Cryosphere 15, 1889–1905 (2021).

    Article  ADS  Google Scholar 

  18. Keith, D. A. et al. A function-based typology for Earth’s ecosystems. Nature 610, 513–518 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shugar, D. H. et al. Rapid worldwide growth of glacial lakes since 1990. Nat. Clim. Change 10, 939–945 (2020).

    Article  ADS  CAS  Google Scholar 

  20. Pitman, K. J. et al. Glacier retreat creating new Pacific salmon habitat in western North America. Nat. Commun. 12, 6816 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. McKay, D. I. A. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

    Article  CAS  Google Scholar 

  22. Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Article  ADS  Google Scholar 

  23. Edwards, T. L. et al. Projected land ice contributions to twenty-first-century sea level rise. Nature 593, 74–82 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Lee, E. et al. Accelerated mass loss of Himalayan glaciers since the Little Ice Age. Sci. Rep. 11, 24284 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huss, M. & Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. 3, 54 (2015).

    Article  ADS  Google Scholar 

  27. Anacona, P. I. et al. Glacier protection laws: potential conflicts in managing glacial hazards and adapting to climate change. Ambio 47, 835–845 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bosson, J.-B., Huss, M. & Osipova, E. Disappearing world heritage glaciers as a keystone of nature conservation in a changing climate. Earths Future 7, 469–479 (2019).

    Article  ADS  Google Scholar 

  29. Bradshaw, C. J. A. et al. Underestimating the challenges of avoiding a ghastly future. Front. Conserv. Sci. 1, 615419 (2021).

    Article  Google Scholar 

  30. RGI Consortium. Randolph Glacier Inventory - A Dataset of Global Glacier Outlines, v.6 (NSIDC, 2017); https://doi.org/10.7265/4m1f-gd79.

  31. Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).

    Article  ADS  CAS  Google Scholar 

  32. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  ADS  Google Scholar 

  33. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  ADS  Google Scholar 

  34. Morlighem, M. et al. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 44, 11,051–11,061 (2017).

    Article  CAS  Google Scholar 

  35. Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).

    Article  ADS  CAS  Google Scholar 

  36. World Glacier Monitoring Service. Fluctuations of Glaciers Database (WGMS, 2022); https://doi.org/10.5904/wgms-fog-2022-09.

  37. Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    Article  ADS  CAS  Google Scholar 

  38. Carrivick, J. L., Heckmann, T., Turner, A. & Fischer, M. An assessment of landform composition and functioning with the first proglacial systems dataset of the central European Alps. Geomorphology 321, 117–128 (2018).

    Article  ADS  Google Scholar 

  39. Richardson, D. C. et al. A functional definition to distinguish ponds from lakes and wetlands. Sci. Rep. 12, 10472 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khedim, N. et al. Topsoil organic matter build‐up in glacier forelands around the world. Glob. Change Biol. 27, 1662–1677 (2021).

    Article  ADS  Google Scholar 

  41. Global Terrestrial Network for Glaciers (GTN-G). GTN-G Glacier Regions (GTN-G, 2017); https://doi.org/10.5904/gtng-glacreg-2017-07.

  42. Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, J. et al. Deglacial release of petrogenic and permafrost carbon from the Canadian Arctic impacting the carbon cycle. Nat. Commun. 13, 7172 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peck, L. S., Barnes, D. K., Cook, A. J., Fleming, A. H. & Clarke, A. Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica. Glob. Change Biol. 16, 2614–2623 (2010).

    Article  ADS  Google Scholar 

  45. St Pierre, K. A. et al. Proglacial freshwaters are significant and previously unrecognized sinks of atmospheric CO2. Proc. Natl Acad. Sci. USA 116, 17690–17695 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cui, X. et al. Global fjords as transitory reservoirs of labile organic carbon modulated by organo-mineral interactions. Sci. Adv. 8, eadd0610 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang-Erlandsson, L. et al. A planetary boundary for green water. Nat. Rev. Earth Environ. 3, 380–392 (2022).

    Article  ADS  Google Scholar 

  48. Carrivick, J. L. & Tweed, F. S. Proglacial lakes: character, behaviour and geological importance. Quat. Sci. Rev. 78, 34–52 (2013).

    Article  ADS  Google Scholar 

  49. Bollati, I. M. et al. Geodiversity of proglacial areas and implications for geosystem services: a review. Geomorphology 421, 108517 (2022).

    Article  Google Scholar 

  50. Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Watson, J. E. M. et al. Protect the last of the wild. Nature 563, 27–30 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Muhlfeld, C. C. et al. Specialized meltwater biodiversity persists despite widespread deglaciation. Proc. Natl Acad. Sci. USA 117, 12208–12214 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, J. R. et al. Islands in the ice: potential impacts of habitat transformation on Antarctic biodiversity. Glob. Change Biol. 28, 5865–5880 (2022).

    Article  CAS  Google Scholar 

  54. Winterbourn, M. J., Cadbury, S., Ilg, C. & Milner, A. M. Mayfly production in a New Zealand glacial stream and the potential effect of climate change. Hydrobiologia 603, 211–219 (2008).

    Article  Google Scholar 

  55. Rosero, P. et al. Multi‐taxa colonisation along the foreland of a vanishing equatorial glacier. Ecography 44, 1010–1021 (2021).

    Article  Google Scholar 

  56. Sigdel, S. R., Zhang, H., Zhu, H., Muhammad, S. & Liang, E. Retreating glacier and advancing forest over the past 200 years in the Central Himalayas. J. Geophys. Res. Biogeosci. 125, e2020JG005751 (2020).

    Article  ADS  Google Scholar 

  57. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    Article  PubMed  Google Scholar 

  59. Farinotti, D., Round, V., Huss, M., Compagno, L. & Zekollari, H. Large hydropower and water-storage potential in future glacier-free basins. Nature 575, 341–344 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. IPBES. Methodological Assessment Report on the Diverse Values and Valuation of Nature (IPBES Secretariat, 2022).

  61. Dinerstein, E. et al. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  62. UNESCO & IUCN. World Heritage Glaciers: Sentinels of Climate Change (IUCN, 2022).

  63. Dudley, N., Hockings, M. & Verschuuren, B. To go, or not to go? What are business attitudes to the philosophy of no-go policies and protected areas? PARKS 21, 7–10 (2015).

    Article  Google Scholar 

  64. Boyd, D. R. The Rights of Nature: A Legal Revolution That Could Save the World (ECW Press, 2017).

  65. Cohen-Shacham, E., Walters, G., Janzen, C. & Maginnis, S. (eds) Nature-based Solutions to Address Global Societal Challenges (IUCN, 2016).

  66. Jones, N. UN forges historic deal to protect ocean life: what researchers think. Nature https://doi.org/10.1038/d41586-023-00684-z (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. UNEP-WCMC & IUCN. The World Database on Protected Areas. Protected Planet (2022); https://www.protectedplanet.net/en/thematic-areas/wdpa?tab=WDPA.

  69. Compagno, L., Zekollari, H., Huss, M. & Farinotti, D. Limited impact of various climate datasets on future glacier evolution in Scandinavia and Iceland. J. Glaciol. 67, 727–743 (2021).

    Article  ADS  Google Scholar 

  70. Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 282, 104–115 (2003).

    Article  ADS  Google Scholar 

  71. Oerlemans, J. & Nick, F. M. A minimal model of a tidewater glacier. Ann. Glaciol. 42, 1–6 (2005).

    Article  ADS  Google Scholar 

  72. Huss, M., Jouvet, G., Farinotti, D. & Bauder, A. Future high-mountain hydrology: a new parameterization of glacier retreat. Hydrol. Earth Syst. Sci. 14, 815–829 (2010).

    Article  ADS  Google Scholar 

  73. Steffen, T., Huss, M., Estermann, R., Hodel, E. & Farinotti, D. Volume, evolution, and sedimentation of future glacier lakes in Switzerland over the 21st century. Earth Surf. Dyn. 10, 723–741 (2022).

    Article  ADS  Google Scholar 

  74. Compagno, L., Huss, M., Zekollari, H., Miles, E. S. & Farinotti, D. Future growth and decline of high mountain Asia’s ice-dammed lakes and associated risk. Commun. Earth Environ. 3, 191 (2022).

    Article  ADS  Google Scholar 

  75. Marzeion, B. et al. Partitioning the uncertainty of ensemble projections of global glacier mass change. Earths Future 8, e2019EF001470 (2020).

    Article  ADS  Google Scholar 

  76. Millan, R., Mouginot, J., Rabatel, A. & Morlighem, M. Ice velocity and thickness of the world’s glaciers. Nat. Geosci. 15, 124–129 (2022).

    Article  ADS  CAS  Google Scholar 

  77. Welty, E. et al. Worldwide version-controlled database of glacier thickness observations. Earth Syst. Sci. Data 12, 3039–3055 (2020).

    Article  ADS  Google Scholar 

  78. Muñoz, R., Huggel, C., Frey, H., Cochachin, A. & Haeberli, W. Glacial lake depth and volume estimation based on a large bathymetric dataset from the Cordillera Blanca, Peru. Earth Surf. Process. Landf. 45, 1510–1527 (2020).

    Article  ADS  Google Scholar 

  79. Haeberli, W. et al. New lakes in deglaciating high-mountain regions – opportunities and risks. Clim. Change 139, 201–214 (2016).

    Article  ADS  Google Scholar 

  80. Ballantyne, C. K. Paraglacial geomorphology. Quat. Sci. Rev. 21, 1935–2017 (2002).

    Article  ADS  Google Scholar 

  81. Bianchi, T. S. et al. Fjords as aquatic critical zones (ACZs). Earth Sci. Rev. 203, 103145 (2020).

    Article  Google Scholar 

  82. Li, D. et al. High Mountain Asia hydropower systems threatened by climate-driven landscape instability. Nat. Geosci. 15, 520–530 (2022).

    Article  ADS  CAS  Google Scholar 

  83. Auriac, A. et al. Iceland rising: solid Earth response to ice retreat inferred from satellite radar interferometry and visocelastic modeling. J. Geophys. Res. Solid Earth 118, 1331–1344 (2013).

    Article  ADS  Google Scholar 

  84. Mark, H. F. et al. Lithospheric erosion in the Patagonian slab window, and implications for glacial isostasy. Geophys. Res. Lett. 49, e2021GL096863 (2022).

    Article  ADS  Google Scholar 

  85. Barletta, V. R. et al. Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability. Science 360, 1335–1339 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Wan, J. X. W., Gomez, N., Latychev, K. & Han, H. K. Resolving glacial isostatic adjustment (GIA) in response to modern and future ice loss at marine grounding lines in West Antarctica. Cryosphere 16, 2203–2223 (2022).

    Article  ADS  Google Scholar 

  87. Mayor, J. R. et al. Elevation alters ecosystem properties across temperate treelines globally. Nature 542, 91–95 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Sommaruga, R. When glaciers and ice sheets melt: consequences for planktonic organisms. J. Plankton Res. 37, 509–518 (2015).

    Article  PubMed  Google Scholar 

  89. O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10,773–10,781 (2015).

    Google Scholar 

  90. Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth Environ. 1, 388–403 (2020).

    Article  ADS  Google Scholar 

  91. Aubert, J. Andiperla willinki n. sp, Plécoptère nouveau des Andes de Patagonie. Mitt. Schweiz. Entomol. Ges. 29, 229–232 (1956).

    Google Scholar 

  92. Nørvang, A. The Zoology of Iceland, Foraminifera Vol. 2, Part 2 (Ejnar Munksgaard, 1945).

  93. Goetghebuer, M. Une espèce brachyptère de Diamésine (Diptère Chironomide). Bull. Ann. Soc. Entomol. Belg. 73, 54–56 (1933).

    Google Scholar 

  94. Towns, D. L. & Peters, W. L. in Fauna of New Zealand Vol. 36 (ed. Duval, C. T.) (Manaaki Whenua, 1996).

  95. Ricker, W. E. Systematic studies in Plecoptera. Report No. 595.735 R52 (Indiana Univ. Press, 1952).

  96. Mateu, J. & Moret, P. Cinq nouveaux Paratrechus de l’Équateur [Coleoptera, Carabidae, Trechini]. Revue française d’entomologie 23, 93–100 (2001).

    Google Scholar 

  97. Heer, O. Die Käfer der Schweiz: Kritische Bemerkungen und Beschreibungen der neuen Arten (Petitpierre, 1837).

  98. Liang, Y. A new genus and species of Enchytraeidae from Tibet. Acta Zootaxonom. Sin. 4, 312–315 (1979).

    Google Scholar 

  99. Egli, M., Favilli, F., Krebs, R., Pichler, B. & Dahms, D. Soil organic carbon and nitrogen accumulation rates in cold and alpine environments over 1 Ma. Geoderma 183, 109–123 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank all the people in science and nature conservation, especially M. Salerno, C. Charbert, K. Héas, M. Heuret, S. Lana, J. R. Lee, C. Poirier and P. Billet, who made this paper possible through the Ice&Life project (www.iceandlife.com) and helped us to noticeably improve its content and the reviewers N. Gomez, W. Immerzeel, N. Lecomte and L. Vargo for their constructive comments. Ice&Life received financial support from WWF France and Mirova Foundation, the Fondation Université Savoie Mont Blanc, the DIPEE Grenoble-Chambery and the FREE-Alpes Federation (FR no. 2001-CNRS), la Banque des Territoires, the Fondation Eau Neige et Glace, Millet Mountain Group, Quechua, Patagonia, Picture, Crédit Agricole des Savoie, Swen Capital Partners, Imepsa and the Kilian Jornet Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.B.B., M.H., F.A., S.C.-F., J.C.C., M.F. and J.P. designed the study that was coordinated by J.B.B. M.H. developed the model and provided data on glacier evolution and subglacial terrain characteristics and J.B.B., F.A. and S.C.-F. analysed them. J.P. analysed the carbon-sequestration potential in emerging terrestrial areas and G.C. analysed the distribution of glaciers in protected areas. J.B.B., with support from M.H., wrote the first draft of the paper and prepared the figures. All authors made substantial contributions to the final version of the paper.

Corresponding author

Correspondence to J. B. Bosson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Natalya Gomez, Walter Immerzeel, Nicolas Lecomte, Lauren Vargo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Validation of glacier model results against independent observations of in-situ mass balance measurements36.

Distribution of misfits (in m water equivalent) between modelled and observed glacier-wide (a) annual and (b) winter mass balance from glaciers worldwide 1980–2020, as well as (c/d) mass balance specified per elevation bands. The root-mean-square-error (RMSE), the number of data points (n) and the correlation (r2) is stated.

Extended Data Fig. 2 Evolution of glaciers surfaces and composition of emerging deglaciated areas from 2020 to 2100.

Glacier location30 and individual regions41 are shown on the basemap. For each region and globally, central circles refer to the modelled 2020 glacier area. On their left and right, the relative evolution of glacier surface and newly emerging habitats are shown in 2100 for the SSP-1-1.9 (low-emission scenario) and 5-8.5 (high-emission scenario) respectively. For clarity, associated uncertainties are not displayed but available in the Supplementary Table sheet 2. Basemap originates from www.naturalearthdata.com.

Extended Data Fig. 3 Assessment of overall uncertainties in modelled glacier ice volume for two selected regions with different glacier characteristics (Iceland, Central Europe).

(A, B) Relative uncertainty in modelled glacier volume by the year 2100 for all individual uncertainty components. (C, D) Time series of individual uncertainties, as well as a combination of the three principal components – glacier model (MOD), Global Circulation Models (GCM), greenhouse-gas emission scenario (SSP) – using the root-sum-of squares.

Extended Data Fig. 4 Evolution of the number of glaciers and emerging overdeepenings between 2020 and 2100.

Glacier location30 and individual regions41 are shown on the basemap. For each region and globally, the circles in the centre refer to modelled glacier number in 2020. On their left and right, the relative changes in the number of glaciers, as well as the number of newly emerging overdeepenings are shown in 2100 for the SSP-1-1.9 (low-emission scenario) and 5-8.5 (high-emission scenario). For clarity, associated uncertainties are not displayed but available in the Supplementary Table sheet 3. Basemap originates from www.naturalearthdata.com.

Extended Data Fig. 5 Evolution of the volume of glaciers and emerging overdeepenings between 2020 and 2100.

Glacier location30 and individual regions41 are shown on the basemap. For each region and globally, the circles in the centre refer to the modelled glacier volume in 2020. On their left and right, the relative evolution of this volume and of the one of newly emerging overdeepenings are shown in 2100 for the SSP-1-1.9 (low-emission scenario) and 5-8.5 (high-emission scenario) respectively. For clarity, associated uncertainties are not displayed but available in the Supplementary Table, sheet 4. Basemap originates from www.naturalearthdata.com.

Extended Data Fig. 6 Characteristics of emerging land in deglaciated areas in 2100.

Glacier location30 and individual regions41 are shown on the basemap. For each region and globally, half circles in the centre refer to the modelled emerging land area in 2100 for the SSP-1-1.9 (low-emission scenario) on the left and 5-8.5 (high-emission scenario) on the right. On their left and right, the relative distribution of habitats and carbon storage potential in emerging soils are shown in 2100 for the SSP-1-1.9 and 5-8.5, respectively. For clarity, associated uncertainties are not displayed but available in the Supplementary Table, sheets 6,7. Basemap originates from www.naturalearthdata.com.

Extended Data Fig. 7 Glaciers, deglaciated areas and topographic and thermal characteristics of deglaciated areas over the 21st century.

Glacier location30 and individual regions41 are shown on the basemap. For each region (geographically grouped for clarity) and globally, the central black circle refers to the modelled glacier area in 2000 and the grey half circles correspond to deglaciated areas in 2100 for the SSP-1-1.9 (low-emission scenario) and 5-8.5 (high–emission scenario). On the left and right, the relative composition of the three types of ecosystems (marine, freshwater, and terrestrial) and their topographic and thermal characteristics modelled for 2100 are shown for both SSPs. For clarity, associated uncertainties are not displayed but available in the Supplementary Table sheet 6. Basemap originates from www.naturalearthdata.com.

Extended Data Fig. 8 An integrative approach to consider and preserve glaciers and emerging postglacial ecosystems.

On the left side (A), we propose a systemic relation linking glaciers and postglacial ecosystems to nature and societies and describe their possible consideration through anthropocentric, bio-ecocentric or integrative views. On the right side (B), we propose a stewardship framework based on three levels of actions (A1-A3) to enhance glaciers and postglacial ecosystems protection.

Supplementary information

Supplementary Figs. 1–15

All figures were produced with the data and code available in the Zenodo repository (https://doi.org/10.5281/zenodo.8070887) .

Supplementary Tables sheets 1–8

The tables were produced with the data and code available in the Zenodo repository (https://doi.org/10.5281/zenodo.8070887).

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosson, J.B., Huss, M., Cauvy-Fraunié, S. et al. Future emergence of new ecosystems caused by glacial retreat. Nature 620, 562–569 (2023). https://doi.org/10.1038/s41586-023-06302-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06302-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene