Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast deposition of faceted lithium polyhedra by outpacing SEI formation

Abstract

Electrodeposition of lithium (Li) metal is critical for high-energy batteries1. However, the simultaneous formation of a surface corrosion film termed the solid electrolyte interphase (SEI)2 complicates the deposition process, which underpins our poor understanding of Li metal electrodeposition. Here we decouple these two intertwined processes by outpacing SEI formation at ultrafast deposition current densities3 while also avoiding mass transport limitations. By using cryogenic electron microscopy4,5,6,7, we discover the intrinsic deposition morphology of metallic Li to be that of a rhombic dodecahedron, which is surprisingly independent of electrolyte chemistry or current collector substrate. In a coin cell architecture, these rhombic dodecahedra exhibit near point-contact connectivity with the current collector, which can accelerate inactive Li formation8. We propose a pulse-current protocol that overcomes this failure mode by leveraging Li rhombic dodecahedra as nucleation seeds, enabling the subsequent growth of dense Li that improves battery performance compared with a baseline. While Li deposition and SEI formation have always been tightly linked in past studies, our experimental approach enables new opportunities to fundamentally understand these processes decoupled from each other and bring about new insights to engineer better batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transition of different dendritic Li to identical faceted Li polyhedra.
Fig. 2: Atomic-resolution cryo-EM of Li rhombic dodecahedra with faceting behaviours.
Fig. 3: Electrochemical analysis of Li plating pathways at ultrafast and low current density regimes.
Fig. 4: Li plating as rhombic dodecahedra in coin cell geometry and its failure mechanism analysis.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Liu, B., Zhang, J.-G. & Xu, W. Advancing lithium metal batteries. Joule 2, 833–845 (2018).

    Article  CAS  Google Scholar 

  2. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).

    Article  CAS  ADS  Google Scholar 

  3. Boyle, D. T. et al. Transient voltammetry with ultramicroelectrodes reveals the electron transfer kinetics of lithium metal anodes. ACS Energy Lett. 5, 701–709 (2020).

    Article  CAS  Google Scholar 

  4. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Li, Y. et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2, 2167–2177 (2018).

    Article  CAS  Google Scholar 

  6. Li, Y., Li, Y. & Cui, Y. Catalyst: how cryo-EM shapes the development of next-generation batteries. Chem 4, 2250–2252 (2018).

    Article  CAS  Google Scholar 

  7. Zhang, E. et al. Expanding the cryogenic electron microscopy toolbox to reveal diverse classes of battery solid electrolyte interphase. iScience 25, 105689 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    Article  CAS  Google Scholar 

  11. Liu, B. et al. Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries. Adv. Mater. 32, e2003657 (2020).

    Article  PubMed  Google Scholar 

  12. Peled, E. & Menkin, S. Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Article  CAS  Google Scholar 

  13. Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article  CAS  Google Scholar 

  14. Ren, X. et al. Guided lithium metal deposition and improved lithium Coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives. ACS Energy Lett. 3, 14–19 (2017).

    Article  ADS  Google Scholar 

  15. Zhang, Y. et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 14, 6889–6896 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Qian, J. et al. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 15, 135–144 (2015).

    Article  CAS  Google Scholar 

  17. Weber, R. et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019).

    Article  CAS  Google Scholar 

  18. Zhang, W. et al. Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 32, e2001740 (2020).

    Article  PubMed  Google Scholar 

  19. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Zhou, S. et al. Incorporation of LiF into functionalized polymer fiber networks enabling high capacity and high rate cycling of lithium metal composite anodes. Chem. Eng. J. 404, 126508 (2021).

    Article  CAS  Google Scholar 

  21. Zheng, J. et al. Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 49, 2701–2750 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Odziemkowski, M. & Irish, D. E. An electrochemical study of the reactivity at the lithium electrolyte/bare lithium metal interface. I. Purified electrolytes. J. Electrochem. Soc. 139, 3063–3074 (1992).

    Article  CAS  ADS  Google Scholar 

  24. Verbrugge, M. W. & Koch, B. J. Microelectrode investigation of ultrahigh-rate lithium deposition and stripping. J. Electroanal. Chem. 367, 123–129 (1994).

    Article  CAS  Google Scholar 

  25. Boyle, D. T. et al. Resolving current-dependent regimes of electroplating mechanisms for fast charging lithium metal anodes. Nano Lett. 22, 8224–8232 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Boyle, D. T. et al. Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes. J. Am. Chem. Soc. 144, 20717–20725 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Mao, H. et al. Current-density regulating lithium metal directional deposition for long cycle-life Li metal batteries. Angew. Chem. Int. Ed. 60, 19306–19313 (2021).

    Article  CAS  Google Scholar 

  28. Jiang, F. & Peng, P. Elucidating the performance limitations of lithium-ion batteries due to species and charge transport through five characteristic parameters. Sci. Rep. 6, 32639 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Du, Z., Wood, D. L., Daniel, C., Kalnaus, S. & Li, J. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries. J. Appl. Electrochem. 47, 405–415 (2017).

    Article  CAS  Google Scholar 

  30. Jurng, S., Brown, Z. L., Kim, J. & Lucht, B. L. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ. Sci. 11, 2600–2608 (2018).

    Article  CAS  Google Scholar 

  31. Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article  CAS  ADS  Google Scholar 

  32. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  CAS  ADS  Google Scholar 

  33. Pei, A., Zheng, G., Shi, F., Li, Y. & Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Sekerka, R. F. Equilibrium and growth shapes of crystals: how do they differ and why should we care? Cryst. Res. Technol. 40, 291–306 (2005).

    Article  CAS  Google Scholar 

  35. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).

    Article  CAS  ADS  Google Scholar 

  37. Gunnarsdóttir, A. B., Vema, S., Menkin, S., Marbella, L. E. & Grey, C. P. Investigating the effect of a fluoroethylene carbonate additive on lithium deposition and the solid electrolyte interphase in lithium metal batteries using in situ NMR spectroscopy. J. Mater. Chem. A 8, 14975–14992 (2020).

    Article  Google Scholar 

  38. Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    Article  CAS  ADS  Google Scholar 

  39. Behling, C., Mayrhofer, K. J. J. & Berkes, B. B. Formation of lithiated gold and its use for the preparation of reference electrodes—an EQCM study. J. Solid State Electrochem. 25, 2849–2859 (2021).

    Article  CAS  Google Scholar 

  40. Hu, X., Gao, Y., Zhang, B., Shi, L. & Li, Q. Superior cycle performance of Li metal electrode with {110} surface texturing. EcoMat 4, e12264 (2022).

    Article  CAS  Google Scholar 

  41. Sur, U. K., Dhason, A. & Lakshminarayanan, V. A simple and low-cost ultramicroelectrode fabrication and characterization method for undergraduate students. J. Chem. Educ. 89, 168–172 (2011).

    Article  Google Scholar 

  42. Guo, R. & Gallant, B. M. Li2O solid electrolyte interphase: probing transport properties at the chemical potential of lithium. Chem. Mater. 32, 5525–5533 (2020).

    Article  CAS  Google Scholar 

  43. Peled, E., Golodnitsky, D. & Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208 (1997).

    Article  CAS  Google Scholar 

  44. Verbrugge, M. W. & Koch, B. J. Microelectrode study of the lithium/propylene carbonate interface: temperature and concentration dependence of physicochemical parameters. J. Electrochem. Soc. 141, 3053–3059 (1994).

    Article  CAS  ADS  Google Scholar 

  45. Churikov, A. V., Gamayunova, I. M. & Shirokov, A. V. Ionic processes in solid-electrolyte passivating films on lithium. J. Solid State Electrochem. 4, 216–224 (2000).

    Article  CAS  Google Scholar 

  46. Churikov, A. V., Nimon, E. S. & Lvov, A. L. Impedance of Li-Sn, Li-Cd and Li-Sn-Cd alloys in propylene carbonate solution. Electrochim. Acta 42, 179–189 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the National Science Foundation (CBET-2143677) and the use of the University of California, Los Angeles California NanoSystems Institute EICN Facilities.

Author information

Authors and Affiliations

Authors

Contributions

X.Y. and Y.L. conceived the project and designed the experiments. X.Y. built the UME set-up and performed electrochemical experiments and SEM characterization. B.L. helped with COMSOL simulations and data analysis. X.Y. and Y.L. carried out cryo-EM experiments. M.M. advised on microscope and imaging analyses. X.Y. and Y.L. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yuzhang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Shizhao Xiong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Discussion, Figs. 1–19, Table 1 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Liu, B., Mecklenburg, M. et al. Ultrafast deposition of faceted lithium polyhedra by outpacing SEI formation. Nature 620, 86–91 (2023). https://doi.org/10.1038/s41586-023-06235-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06235-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing