Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A well-oxygenated eastern tropical Pacific during the warm Miocene

Abstract

The oxygen content of the oceans is susceptible to climate change and has declined in recent decades1, with the largest effect in oxygen-deficient zones (ODZs)2, that is, mid-depth ocean regions with oxygen concentrations <5 μmol kg−1 (ref. 3). Earth-system-model simulations of climate warming predict that ODZs will expand until at least 2100. The response on timescales of hundreds to thousands of years, however, remains uncertain3,4,5. Here we investigate changes in the response of ocean oxygenation during the warmer-than-present Miocene Climatic Optimum (MCO; 17.0–14.8 million years ago (Ma)). Our planktic foraminifera I/Ca and δ15N data, palaeoceanographic proxies sensitive to ODZ extent and intensity, indicate that dissolved-oxygen concentrations in the eastern tropical Pacific (ETP) exceeded 100 µmol kg−1 during the MCO. Paired Mg/Ca-derived temperature data suggest that an ODZ developed in response to an increased west-to-east temperature gradient and shoaling of the ETP thermocline. Our records align with model simulations of data from recent decades to centuries6,7, suggesting that weaker equatorial Pacific trade winds during warm periods may lead to decreased upwelling in the ETP, causing equatorial productivity and subsurface oxygen demand to be less concentrated in the east. These findings shed light on how warm-climate states such as during the MCO may affect ocean oxygenation. If the MCO is considered as a possible analogue for future warming, our findings seem to support models suggesting that the recent deoxygenation trend and expansion of the ETP ODZ may eventually reverse3,4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map showing the areal distribution and intensity of the ETP ODZ.
Fig. 2: Geochemical proxies relevant to Middle Miocene ETP oxygenation from Sites 845 and 872.
Fig. 3: Middle Miocene temperature.
Fig. 4: Hypothesis for the difference in conditions in eastern tropical Pacific between the MMCT and the preceding (warmer) MCO.

Similar content being viewed by others

Data availability

All data generated during this study are available as source data files for figures in which they appear and are available in the NOAA database at https://www.ncei.noaa.gov/access/paleo-search/study/37879Source data are provided with this paper.

References

  1. Eyring, V. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 3 (Cambridge Univ. Press, 2021).

  2. Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Yamamoto, A. et al. Global deep ocean oxygenation by enhanced ventilation in the Southern Ocean under long‐term global warming. Glob. Biogeochem. Cycles 29, 1801–1815 (2015).

    Article  ADS  CAS  Google Scholar 

  4. Fu, W., Primeau, F., Keith Moore, J., Lindsay, K. & Randerson, J. T. Reversal of increasing tropical ocean hypoxia trends with sustained climate warming. Glob. Biogeochem. Cycles 32, 551–564 (2018).

    Article  ADS  CAS  Google Scholar 

  5. Frölicher, T. L. et al. Contrasting upper and deep ocean oxygen response to protracted global warming. Glob. Biogeochem. Cycles 34, e2020GB006601 (2020).

    Article  ADS  Google Scholar 

  6. Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Deutsch, C. et al. Centennial changes in North Pacific anoxia linked to tropical trade winds. Science 345, 665–668 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Stramma, L. & Schmidtko, S. Tropical deoxygenation sites revisited to investigate oxygen and nutrient trends. Ocean Sci. 17, 833–847 (2021).

    Article  ADS  CAS  Google Scholar 

  9. Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).

    Article  ADS  Google Scholar 

  10. Steinthorsdottir, M., Jardine, P. E. & Rember, W. C. Near‐future pCO2 during the hot Miocene Climatic Optimum. Paleoceanogr. Paleoclimatol. 36, e2020PA003900 (2021).

    Article  ADS  Google Scholar 

  11. Lu, Z., Jenkyns, H. C. & Rickaby, R. E. M. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology 38, 1107–1110 (2010).

    Article  ADS  CAS  Google Scholar 

  12. Ren, H., Sigman, D. M., Thunell, R. C. & Prokopenko, M. G. Nitrogen isotopic composition of planktonic foraminifera from the modern ocean and recent sediments. Limnol. Oceanogr. 57, 1011–1024 (2012).

    Article  ADS  CAS  Google Scholar 

  13. Lu, W. et al. Refining the planktic foraminiferal I/Ca proxy: results from the Southeast Atlantic Ocean. Geochim. Cosmochim. Acta 287, 318–327 (2020).

    Article  ADS  CAS  Google Scholar 

  14. Hardisty, D. S. et al. Limited iodate reduction in shipboard seawater incubations from the Eastern Tropical North Pacific oxygen deficient zone. Earth Planet. Sci. Lett. 554, 116676 (2021).

    Article  CAS  Google Scholar 

  15. Rue, E. L., Smith, G. J., Cutter, G. A. & Bruland, K. W. The response of trace element redox couples to suboxic conditions in the water column. Deep Sea Res. I Oceanogr. Res. Pap. 44, 113–134 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Chance, R., Baker, A. R., Carpenter, L. & Jickells, T. D. The distribution of iodide at the sea surface. Environ. Sci. Process. Impacts 16, 1841–1859 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Kast, E. R. et al. Nitrogen isotope evidence for expanded ocean suboxia in the early Cenozoic. Science 364, 386–389 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Auderset, A. et al. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609, 77–82 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smart, S. M. et al. Ground-truthing the planktic foraminifer-bound nitrogen isotope paleo-proxy in the Sargasso Sea. Geochim. Cosmochim. Acta 235, 463–482 (2018).

    Article  ADS  CAS  Google Scholar 

  20. Zhou, X., Hess, A. V., Bu, K., Sagawa, T. & Rosenthal, Y. Simultaneous determination of I/Ca and other elemental ratios in foraminifera using sector field ICP-MS. Geochem. Geophys. Geosyst. 23, e2022GC010660 (2022).

    Article  ADS  Google Scholar 

  21. Jickells, T. D., Boyd, S. S. & Knap, A. H. Iodine cycling in the Sargasso Sea and the Bermuda inshore waters. Mar. Chem. 24, 61–82 (1988).

    Article  CAS  Google Scholar 

  22. Moriyasu, R., Evans, N., Bolster, K. M., Hardisty, D. S. & Moffett, J. W. The distribution and redox speciation of iodine in the eastern tropical North Pacific Ocean. Glob. Biogeochem. Cycles 34, e2019GB006302 (2020).

    Article  ADS  CAS  Google Scholar 

  23. Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Sigman, D. M. et al. Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin. Glob. Biogeochem. Cycles 19, GB4022 (2005).

    Article  ADS  Google Scholar 

  25. O’Dea, A. et al. Formation of the Isthmus of Panama. Sci. Adv. 2, e1600883 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. García, H. E. & Gordon, L. I. Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr. 37, 1307–1312 (1992).

    Article  ADS  Google Scholar 

  27. Yan, Q. et al. Large shift of the Pacific Walker Circulation across the Cenozoic. Natl Sci. Rev. 8, nwaa101 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Nathan, S. A. & Leckie, R. M. Early history of the Western Pacific Warm Pool during the middle to late Miocene (~13.2–5.8 Ma): role of sea-level change and implications for equatorial circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 274, 140–159 (2009).

    Article  Google Scholar 

  30. Tian, J., Ma, W., Lyle, M. W. & Shackford, J. K. Synchronous mid-Miocene upper and deep oceanic δ13C changes in the east equatorial Pacific linked to ocean cooling and ice sheet expansion. Earth Planet. Sci. Lett. 406, 72–80 (2014).

    Article  ADS  CAS  Google Scholar 

  31. Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Glob. Biogeochem. Cycles 8, 103–116 (1994).

    Article  ADS  CAS  Google Scholar 

  32. Cortese, G., Gersonde, R., Hillenbrand, C.-D. & Kuhn, G. Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth Planet. Sci. Lett. 224, 509–527 (2004).

    Article  ADS  CAS  Google Scholar 

  33. Lyle, M. & Baldauf, J. Biogenic sediment regimes in the Neogene equatorial Pacific, IODP Site U1338: burial, production, and diatom community. Palaeogeogr. Palaeoclimatol. Palaeoecol. 433, 106–128 (2015).

    Article  Google Scholar 

  34. Holbourn, A. et al. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology 42, 19–22 (2014).

    Article  ADS  CAS  Google Scholar 

  35. Kochhann, K. G. D., Holbourn, A., Kuhnt, W. & Xu, J. Eastern equatorial Pacific benthic foraminiferal distribution and deep water temperature changes during the early to middle Miocene. Mar. Micropaleontol. 133, 28–39 (2017).

    Article  ADS  Google Scholar 

  36. Wu, M. et al. A very likely weakening of Pacific Walker Circulation in constrained near-future projections. Nat. Commun. 12, 6502 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schlitzer, R. Ocean Data View. https://odv.awi.de/ (2021).

  38. Olsen, A. et al. The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8, 297–323 (2016).

    Article  ADS  Google Scholar 

  39. Olsen, A. et al. GLODAPv2.2019 – an update of GLODAPv2. Earth Syst. Sci. Data 11, 1437–1461 (2019).

    Article  ADS  Google Scholar 

  40. Holbourn, A., Kuhnt, W., Schulz, M., Flores, J.-A. & Andersen, N. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth Planet. Sci. Lett. 261, 534–550 (2007).

    Article  ADS  CAS  Google Scholar 

  41. Miller, K. G., Feigenson, M. D., Wright, J. D. & Clement, B. M. Miocene isotope reference section, Deep Sea Drilling Project Site 608: an evaluation of isotope and biostratigraphic resolution. Paleoceanography 6, 33–52 (1991).

    Article  ADS  Google Scholar 

  42. Sosdian, S. M. & Lear, C. H. Initiation of the Western Pacific Warm Pool at the Middle Miocene Climate Transition? Paleoceanogr. Paleoclimatol. 35, e2020PA003920 (2020).

    Article  ADS  Google Scholar 

  43. Holbourn, A. et al. Does Antarctic glaciation force migration of the tropical rain belt? Geology 38, 783–786 (2010).

    Article  ADS  CAS  Google Scholar 

  44. Sosdian, S. M., Babila, T. L., Greenop, R., Foster, G. L. & Lear, C. H. Ocean carbon storage across the middle Miocene: a new interpretation for the Monterey Event. Nat. Commun. 11, 134 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leutert, T. J., Auderset, A., Martínez-García, A., Modestou, S. & Meckler, A. N. Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene. Nat. Geosci. 13, 634–639 (2020).

    Article  ADS  CAS  Google Scholar 

  46. Boyle, E. A. & Keigwin, L. D. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett. 76, 135–150 (1985).

    Article  ADS  CAS  Google Scholar 

  47. Rosenthal, Y., Boyle, E. A. & Labeyrie, L. Last Glacial Maximum paleochemistry and deepwater circulation in the Southern Ocean: evidence from foraminiferal cadmium. Paleoceanography 12, 787–796 (1997).

    Article  ADS  Google Scholar 

  48. Rosenthal, Y., Field, M. P. & Sherrell, R. M. Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Anal. Chem. 71, 3248–3253 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Winkelbauer, H. et al. Foraminifera iodine to calcium ratios: approach and cleaning. Geochem. Geophys. Geosyst. 22, e2021GC009811 (2021).

    Article  ADS  CAS  Google Scholar 

  50. Fox, L. R., Wade, B. S., Holbourn, A., Leng, M. J. & Bhatia, R. Temperature gradients across the Pacific Ocean during the Middle Miocene. Paleoceanogr. Paleoclimatol. 36, e2020PA003924 (2021).

    Article  ADS  Google Scholar 

  51. Anand, P., Elderfield, H. & Conte, M. H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanogr. Paleoclimatol. 18, 1050 (2003).

    ADS  Google Scholar 

  52. Rosenthal, Y., Bova, S. & Zhou, X. A user guide for choosing planktic foraminiferal Mg/Ca-temperature calibrations. Paleoceanogr. Paleoclimatol. 37, e2022PA004413 (2022).

    Article  ADS  Google Scholar 

  53. Evans, D. & Müller, W. Deep time foraminifera Mg/Ca paleothermometry: nonlinear correction for secular change in seawater Mg/Ca. Paleoceanogr. Paleoclimatol. 27, PA4205 (2012).

    ADS  Google Scholar 

  54. Ren, H. et al. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science 323, 244–248 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Sigman, D. M. et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73, 4145–4153 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Casciotti, K. L., Sigman, D. M., Hastings, M. G. & Bo, J. K. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 74, 4905–4912 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. McIlvin, M. R. & Casciotti, K. L. Technical updates to the bacterial method for nitrate isotopic analyses. Anal. Chem. 83, 1850–1856 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S. & Sigman, D. M. Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. Rapid Commun. Mass Spectrom. 30, 1365–1383 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Leichliter, J. N. et al. Nitrogen isotopes in tooth enamel record diet and trophic level enrichment: results from a controlled feeding experiment. Chem. Geol. 563, 120047 (2021).

    Article  CAS  Google Scholar 

  60. Shipboard Scientific Party. Site 845. in Proceedings of the Ocean Drilling Program, Initial Reports Vol. 138 (eds Mayer, L. et al.) 189–263 (Ocean Drilling Program, 1992).

  61. Miller, K. G., Wright, J. D. & Fairbanks, R. G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res. Solid Earth 96, 6829–6848 (1991).

    Article  Google Scholar 

  62. Vincent, E. & Toumarkine, M. Data report: Miocene planktonic foraminifers from the eastern equatorial Pacific. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 138 (eds Pisias, N. G., Mayer, L. A., Janecek, T. R., Palmer-Julson, A. & van Andel, T. H.) 895–907 (Ocean Drilling Program, 1995).

  63. Zhou, X., Thomas, E., Rickaby, R. E. M., Winguth, A. M. E. & Lu, Z. I/Ca evidence for upper ocean deoxygenation during the PETM. Paleoceanography 29, 964–975 (2014).

    Article  ADS  Google Scholar 

  64. Hardisty, D. S. et al. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth Planet. Sci. Lett. 463, 159–170 (2017).

    Article  ADS  CAS  Google Scholar 

  65. van Raden, U. J., Groeneveld, J., Raitzsch, M. & Kucera, M. Mg/Ca in the planktonic foraminifera Globorotalia inflata and Globigerinoides bulloides from Western Mediterranean plankton tow and core top samples. Mar. Micropaleontol. 78, 101–112 (2011).

    Article  ADS  Google Scholar 

  66. Stainbank, S. et al. Assessing the impact of diagenesis on foraminiferal geochemistry from a low latitude, shallow-water drift deposit. Earth Planet. Sci. Lett. 545, 116390 (2020).

    Article  CAS  Google Scholar 

  67. Martinez-Garcia, A. et al. Laboratory assessment of the impact of chemical oxidation, mineral dissolution, and heating on the nitrogen isotopic composition of fossil-bound organic matter. Geochem. Geophys. Geosyst. 23, e2022GC010396 (2022).

    Article  ADS  CAS  Google Scholar 

  68. Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. (eds) Geologic Time Scale 2020 Vol. 2 (Elsevier, 2020).

  69. Barron, J. A. Planktonic marine diatom record of the past 18 My: appearances and extinctions in the Pacific and Southern Oceans. Diatom Res. 18, 203–224 (2003).

    Article  ADS  Google Scholar 

  70. National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data, and Information Service (NESDIS). Geo-polar blended 5 km SST analysis for the full globe (2021).

  71. Shevenell, A. E. & Kennett, J. P. in Geophysical Monograph Series Vol. 151 (eds Exon, N. F., Kennett, J. P. & Malone, M. J.) 235–251 (American Geophysical Union, 2004).

  72. Shipboard Scientific Party. Site 1171. in Proceedings of the Ocean Drilling Program, Initial Reports (ed. Scroggs, J. M.) 176 (2001).

  73. Shevenell, A. E., Kennett, J. P. & Lea, D. W. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305, 1766–1770 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Wright and R. Mortlock for providing carbon and oxygen isotope analysis, K. Bu for help with trace-element analysis, B. Taphorn for his help with sample preparation for nitrogen isotope analysis and K. Wyman for help with scanning electron microscope images. We thank F. Boscolo-Galazzo and the two anonymous reviewers, whose comments improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.V.H., Y.R., K.G.M. and A.A. conceived the study. A.V.H. and Y.R. composed the manuscript, with contributions from A.A., D.M.S. and A.M.-G. Geochemical analysis was done by A.V.H. (trace elements) and A.A. (nitrogen isotopes). Y.R. and X.Z. supervised the trace-elemental analysis and interpretation. A.M.-G. and D.M.S. supervised the nitrogen isotope analysis and interpretation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Anya V. Hess.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Mark Altabet and Flavia Boscolo-Galazzo for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Age–depth correlation for Site 845 Hole A.

Size and shape of red boxes for carbon isotope correlation points indicate uncertainty. Oxygen and carbon isotopes are from C. mundulus sp. measured at this site. Ages and depths are from refs. 60,68,69.

Source data

Extended Data Fig. 2 Correlation of carbon isotope curves between Site U1338 and Site 845.

a, Site U1338. b, Site 845. Site U1338 data from Holbourn et al.34. Correlation points labelled 1–4; horizontal bars indicate uncertainty, which is also shown as box sizes in Extended Data Fig. 1.

Source data

Extended Data Fig. 3 Calibration of I/Ca and minimum water-column oxygen concentration.

Calibration of I/Ca in foraminifera and minimum water-column oxygen concentration, that is, oxygen concentration at depth of maximum depletion ([O2]min). Boxes indicate the ±1 s.d. range of I/Ca values for the MCO and the MMCT at Site 845 (Fig. 2a) and their interpreted [O2]min from this plot, in the case of the MCO, and from deductions in Hardisty et al.14 and nitrogen isotopes, in the case of the MMCT. Shading for [O2]min matches that in Fig. 1. Modified from Zhou, Hess et al.20.

Extended Data Fig. 4 Scanning electron microscope images of planktic foraminifera from Site 845.

Images show outside, inside and cross-sectional views. Note similar quality of preservation (moderate to poor) throughout the study interval. Scale bars are 50 μm.

Extended Data Fig. 5 Map showing location of sites used in regional SST compilation.

Base map is modern SST from the NOAA70. Site 845 palaeolocations from Shipboard Scientific Party60, other palaeolocations from ODSN Plate Tectonic Reconstruction Service.

Extended Data Fig. 6 SST by region.

Data used to construct Fig. 3a. SST by region relative to their averages from 16–15 Ma, smoothed using 100-kyr bins. Inverted triangles indicate age control points, coloured by site68,69,71,72. To compare Mg/Ca data from different foraminifera species, some without modern equivalents and therefore lacking species-specific temperature calibrations, we calculate temperatures using the same multispecies equation at all sites (see Methods). Temperatures derived from TEX86 data are only available for one site and so are presented using the original authors’ calibrations45. In constructing Fig. 3a, for the site with TEX86 data, those temperatures are used rather than Mg/Ca-derived temperatures and in this figure, Mg/Ca-derived temperatures are dashed. a, West Pacific warm pool42,43,44. b, ETP50. c, Southern Ocean45,73.

Source data

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hess, A.V., Auderset, A., Rosenthal, Y. et al. A well-oxygenated eastern tropical Pacific during the warm Miocene. Nature 619, 521–525 (2023). https://doi.org/10.1038/s41586-023-06104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06104-6

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology