Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Copper-catalysed enantioconvergent alkylation of oxygen nucleophiles

Abstract

Carbon–oxygen bonds are commonplace in organic molecules, including chiral bioactive compounds; therefore, the development of methods for their construction with simultaneous control of stereoselectivity is an important objective in synthesis. The Williamson ether synthesis, first reported in 18501, is the most widely used approach to the alkylation of an oxygen nucleophile, but it has significant limitations (scope and stereochemistry) owing to its reaction mechanism (SN2 pathway). Transition-metal catalysis of the coupling of an oxygen nucleophile with an alkyl electrophile has the potential to address these limitations, but progress so far has been limited2,3,4,5,6,7, especially with regard to controlling enantioselectivity. Here we establish that a readily available copper catalyst can achieve an array of enantioconvergent substitution reactions of α-haloamides, a useful family of electrophiles, by oxygen nucleophiles; the reaction proceeds under mild conditions in the presence of a wide variety of functional groups. The catalyst is uniquely effective in being able to achieve enantioconvergent alkylations of not only oxygen nucleophiles but also nitrogen nucleophiles, giving support for the potential of transition-metal catalysts to provide a solution to the pivotal challenge of achieving enantioselective alkylations of heteroatom nucleophiles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The substitution of alkyl electrophiles by oxygen nucleophiles.
Fig. 2: Copper-catalysed enantioconvergent alkylations of oxygen nucleophiles.
Fig. 3: Copper-catalysed enantioconvergent alkylations of oxygen nucleophiles.
Fig. 4: Catalytic enantioconvergent alkylations of nitrogen nucleophiles.
Fig. 5: Mechanistic observations.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper, its Supplementary Information (experimental procedures and characterization data) and from the Cambridge Crystallographic Data Centre (https://www.ccdc.cam.ac.uk/structures; crystallographic data are available free of charge under CCDC reference numbers CCDC 21922802192286).

References

  1. Williamson, A. Theory of etherification. Philos. Mag. 37, 350–356 (1850).

    Google Scholar 

  2. Kazmaier, U. (ed.) Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis (Springer, 2012).

  3. Nakajima, K., Shibata, M. & Nishibayashi, Y. Copper-catalyzed enantioselective propargylic etherification of propargylic esters with alcohols. J. Am. Chem. Soc. 137, 2472–2475 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Li, R.-Z. et al. Site-divergent delivery of terminal propargyls to carbohydrates by synergistic catalysis. Chem 3, 834–845 (2017).

    Article  CAS  Google Scholar 

  5. Li, R.-Z. et al. Enantioselective propargylation of polyols and desymmetrization of meso 1,2-diols by copper/borinic acid dual catalysis. Angew. Chem. Int. Ed. 56, 7213–7217 (2017).

    Article  CAS  Google Scholar 

  6. Li, R.-Z., Liu, D.-Q. & Niu, D. Asymmetric O-propargylation of secondary aliphatic alcohols. Nat. Catal. 3, 672–680 (2020).

    Article  CAS  Google Scholar 

  7. Xu, X., Peng, L., Chang, X. & Guo, C. Ni/chiral sodium carboxylate dual catalyzed asymmetric O-propargylation. J. Am. Chem. Soc. 143, 21048–21055 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Kennemur, J. L., Maji, R., Scharf, M. J. & List, B. Catalytic asymmetric hydroalkoxylation of C−C multiple bonds. Chem. Rev. 121, 14649–14681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takemoto, Y. & Miyabe, H. in Catalytic Asymmetric Synthesis 3rd edn (ed. Ojima, I.) 227–267 (Wiley, 2010).

  10. Schneider, N., Lowe, D. M., Sayle, R. A., Tarselli, M. A. & Landrum, G. A. Big data from pharmaceutical patents: a computational analysis of medicinal chemists’ bread and butter. J. Med. Chem. 59, 4385–4402 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes. ACS Cent. Sci. 3, 692–700 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang, X. & Tan, C.-H. Stereospecific and stereoconvergent nucleophilic substitution reactions at tertiary carbon centers. Chem 7, 1451–1486 (2021).

    Article  CAS  Google Scholar 

  14. Grange, R. L., Clizbe, E. A. & Evans, P. A. Recent developments in asymmetric allylic amination reactions. Synthesis 48, 2911–2968 (2016).

    Article  CAS  Google Scholar 

  15. Lauder, K., Toscani, A., Scalacci, N. & Castagnolo, D. Synthesis and reactivity of propargylamines in organic chemistry. Chem. Rev. 117, 14091–14200 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, D.-Y. & Hu, X.-P. Recent advances in copper-catalyzed propargylic substitution. Tetrahedron Lett. 56, 283–295 (2015).

    Article  CAS  Google Scholar 

  17. Zhang, H. et al. Construction of the N1−C3 linkage stereogenic centers by catalytic asymmetric amination reaction of 3-bromooxindoles with indolines. Org. Lett. 16, 2394–2397 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Zhang, X. et al. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction. Science 363, 400–404 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Bartoszewicz, A., Matier, C. D. & Fu, G. C. Enantioconvergent alkylations of amines by alkyl electrophiles: copper-catalyzed nucleophilic substitutions of racemic α-halolactams by indoles. J. Am. Chem. Soc. 141, 14864–14869 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Y., Wang, S., Shan, W. & Shao, Z. Direct asymmetric N-propargylation of indoles and carbazoles catalyzed by lithium SPINOL phosphate. Nat. Commun. 11, 226 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Chen, C., Peters, J. C. & Fu, G. C. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity. Nature 596, 250–256 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Zhang, Y.-F. et al. Enantioconvergent Cu-catalyzed radical C−N coupling of racemic secondary alkyl halides to access α-chiral primary amines. J. Am. Chem. Soc. 143, 15413–15419 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Cho, H. et al. Photoinduced, copper-catalyzed enantioconvergent alkylations of anilines by racemic tertiary electrophiles: synthesis and mechanism. J. Am. Chem. Soc. 144, 4550–4558 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ding, C.-H. & Hou, X.-L. Catalytic asymmetric propargylation. Chem. Rev. 111, 1914–1937 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, Z., Behnke, N. E. & Kürti, L. Copper-catalyzed synthesis of hindered ethers from α-bromo carbonyl compounds. Org. Lett. 20, 5452–5456 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fantinati, A., Zanirato, V., Marchetti, P. & Trapella, C. The fascinating chemistry of α-haloamides. ChemistryOpen 9, 100–170 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Umejiego, N. N. et al. Targeting a prokaryotic protein in a eukaryotic pathogen: identification of lead compounds against cryptosporidiosis. Chem. Biol. 15, 70–77 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tanaka, T., Oyamada, M., Igarashi, K. & Takasawa, Y. Plant growth-regulating activity, and photolytic and microbial decomposition of optical isomers of naproanilide. Weed Res. 36, 50–57 (1991).

    CAS  Google Scholar 

  30. Whitehurst, B. C. et al. Identification of 2-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)amino)-N-phenylpropanamides as a novel class of potent DprE1 inhibitors. Bioorg. Med. Chem. Lett. 30, 127192 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Kalita, D. et al. Interactions of amino acids, carboxylic acids, and mineral acids with different quinoline derivatives. J. Mol. Struct. 990, 183–196 (2011).

    Article  CAS  ADS  Google Scholar 

  32. Maurya, S. K. et al. Triazole inhibitors of Cryptosporidium parvum inosine 50-monophosphate dehydrogenase. J. Med. Chem. 52, 4623–4630 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, J., Wang, Y., Zhang, P. & Wu, J. Direct amination of phenols under metal-free conditions. Synlett 24, 1448–1454 (2013).

    Article  CAS  Google Scholar 

  34. Lengyel, I. & Sheehan, J. C. α-Lactams (aziridinones). Angew. Chem. Int. Ed. 7, 25–36 (1968).

    Article  CAS  Google Scholar 

  35. Hoffman, R. V. & Cesare, V. α-Lactams. Sci. Synth. 21, 591–608 (2005).

    Google Scholar 

  36. Baumgarten, H. E., Chiang, N.-C. R., Elia, V. J. & Beum, P. V. Reactions of l-tert-butyl-3-phenyaziridinone and α-bromo-tert-butylphenylacetamide with benzyl-Grignard reagents. J. Org. Chem. 50, 5507–5512 (1985).

    Article  CAS  Google Scholar 

  37. Boyer, C. et al. Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): from fundamentals to bioapplications. Chem. Rev. 116, 1803–1949 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Montanari, F. & Quici, S. in e-EROS Encyclopedia of Reagents for Organic Synthesis 1–12 (Wiley, 2016).

  39. Casitas, A. & Ribas, X. The role of organometallic copper(III) complexes in homogeneous catalysis. Chem. Sci. 4, 2301–2318 (2013).

    Article  CAS  Google Scholar 

  40. Musa, O. M., Choi, S.-Y., Horner, J. H. & Newcomb, M. N. Absolute rate constants for α-amide radical reactions. J. Org. Chem. 63, 786–793 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry 155–157 (University Science Books, 2006).

Download references

Acknowledgements

Support has been provided by the National Institutes of Health (National Institute of General Medical Sciences, R01–GM109194 and R35–GM145315), the Beckman Institute (support for the Caltech Center for Catalysis and Chemical Synthesis, EPR Facility and X-ray Crystallography Facility), the Dow Next-Generation Educator Fund (grant to Caltech) and Boehringer–Ingelheim Pharmaceuticals. We thank R. Anderson, H. Cho, S. Munoz, P. H. Oyala, F. Schneck, M. K. Takase and X. Tong for assistance and discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.C. performed all experiments. C.C. and G.C.F. wrote the paper. Both authors contributed to the analysis and the interpretation of the results.

Corresponding author

Correspondence to Gregory C. Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Copper-catalyzed enantioconvergent alkylations of oxygen nucleophiles.

a. Functional-group compatibility. b. Other families of electrophiles.

Extended Data Fig. 2 Mechanistic observations.

a. Exploration of a radical intermediate. b. Synthesis and catalytic activity of Cu(LX*)(MeCN). c. DFT studies of the spin density of Cu(LX*)(OPh): BP86-d3(BJ)/def2-TZVP/SMD(THF); contour values of 0.048 and 0.020 for N and K, respectively.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Fu, G.C. Copper-catalysed enantioconvergent alkylation of oxygen nucleophiles. Nature 618, 301–307 (2023). https://doi.org/10.1038/s41586-023-06001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06001-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing