Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

CAR immune cells: design principles, resistance and the next generation

An Author Correction to this article was published on 20 June 2023

This article has been updated

Abstract

The remarkable clinical activity of chimeric antigen receptor (CAR) therapies in B cell and plasma cell malignancies has validated the use of this therapeutic class for liquid cancers, but resistance and limited access remain as barriers to broader application. Here we review the immunobiology and design principles of current prototype CARs and present emerging platforms that are anticipated to drive future clinical advances. The field is witnessing a rapid expansion of next-generation CAR immune cell technologies designed to enhance efficacy, safety and access. Substantial progress has been made in augmenting immune cell fitness, activating endogenous immunity, arming cells to resist suppression via the tumour microenvironment and developing approaches to modulate antigen density thresholds. Increasingly sophisticated multispecific, logic-gated and regulatable CARs display the potential to overcome resistance and increase safety. Early signs of progress with stealth, virus-free and in vivo gene delivery platforms provide potential paths for reduced costs and increased access of cell therapies in the future. The continuing clinical success of CAR T cells in liquid cancers is driving the development of increasingly sophisticated immune cell therapies that are poised to translate to treatments for solid cancers and non-malignant diseases in the coming years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of key milestones in CAR T cell development.
Fig. 2: CAR structure–function relationships.
Fig. 3: Next-generation platforms.

Similar content being viewed by others

Change history

References

  1. Abramson, J. S. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839–852 (2020).

    Article  PubMed  Google Scholar 

  2. Nastoupil, L. J. et al. Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US lymphoma CAR T consortium. J. Clin. Oncol. 38, 3119–3128 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Maude, S. L., Laetsch, T. W., Buchner, J. & Grupp, S. A. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pasquini, M. C. et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 4, 5414–5424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schultz, L. M. et al. Disease burden affects outcomes in pediatric and young adult B-cell lymphoblastic leukemia after commercial tisagenlecleucel: a pediatric real-world chimeric antigen receptor consortium report. J. Clin. Oncol. 40, 945–955 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fowler, N. H. et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial. Nat. Med. 28, 325–332 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Locke, F. L. et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N. Engl. J. Med. 386, 640–654 (2021). This pivotal trial demonstrated CD19-CAR therapy outperforming autologous stem-cell transplant for second line therapy of LBCL.

    Article  PubMed  Google Scholar 

  11. Kamdar, M. et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim analysi. Lancet 399, 2294–2308 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Neelapu, S. S. et al. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial. Nat. Med. 28, 735–742 (2022). This study demonstrated that axi-cel is highly effective in the first-line therapy setting for high-risk LBCL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Berdeja, J. G. et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 398, 314–324 (2021). This study showed impressive clinical activity of the BCMA-directed therapy ciltacabtagene autoleucel.

    Article  CAS  PubMed  Google Scholar 

  15. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Shah, N. N. et al. CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J. Clin. Oncol. 38, 1938–1950 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baird, J. H. et al. CD22-directed CAR T-cell therapy induces complete remissions in CD19-directed CAR–refractory large B-cell lymphoma. Blood 137, 2321–2325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramos, C. A. et al. Anti-CD30 CAR-T cell therapy in relapsed and refractory Hodgkin lymphoma. J. Clin. Oncol. 38, 3794–3804 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, M. et al. Autologous nanobody-derived fratricide-resistant CD7-CAR T-cell therapy for patients with relapsed and refractory T-cell acute lymphoblastic leukemia/lymphoma. Clin. Cancer Res. 28, 2830–2843 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Pan, J. et al. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial. J. Clin. Oncol. 39, 3340–3351 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Lu, P. et al. Naturally selected CD7 CAR-T therapy without genetic manipulations for T-ALL/LBL: first-in-human phase 1 clinical trial. Blood 140, 321–334 (2022).

    CAS  PubMed  Google Scholar 

  22. Yang, J. et al. High effectiveness and safety of anti-CD7 CAR T-cell therapy in treating relapsed or refractory (R/R) T-cell acute lymphoblastic leukemia (T-ALL). Blood 138, 473 (2021).

    Article  Google Scholar 

  23. Zhang, W. Y. et al. Long-term safety and efficacy of CART-20 cells in patients with refractory or relapsed B-cell non-Hodgkin lymphoma: 5-years follow-up results of the phase I and IIa trials. Signal Transduct. Target. Ther. 2, 17054 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Mailankody, S. et al. Phase I first-in-class trial of MCARH109, a G protein coupled receptor class C group 5 member D (GPRC5D) targeted CAR T cell therapy in patients with relapsed or refractory multiple myeloma. Blood 138, 827 (2021).

    Article  Google Scholar 

  25. D’angelo, S. P. et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1c259T cells in synovial sarcoma. Cancer Discov. 8, 944–957 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016). This case report showed that IL-13Rα2-targeting CAR-T cells administered via intracavitary and intraventricular delivery routes were safe and effective in a patient with glioblastoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Majzner, R. G. et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603, 934–941 (2022). This study demonstrated clinical activity of GD2 CAR-T cells in diffuse midline gliomas.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qi, C. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat. Med. 28, 1189–1198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morris, E. C., Neelapu, S. S., Giavridis, T. & Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 22, 85–96 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Majzner, R. G. & Mackall, C. L. Clinical lessons learned from the first leg of the CAR T cell journey. Nat. Med. 25, 1341–1355 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maher, J., Brentjens, R. J., Gunset, G., Rivière, I. & Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat. Biotechnol. 20, 70–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Imai, C. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18, 676–684 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Harris, D. T. et al. Comparison of T cell activities mediated by human TCRs and CARs that use the same recognition domains. J. Immunol. 200, 1088–1100 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Anikeeva, N. et al. Efficient killing of tumor cells by CAR-T cells requires greater number of engaged CARs than TCRs. J. Biol. Chem. 297, 101033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gudipati, V. et al. Inefficient CAR-proximal signaling blunts antigen sensitivity. Nat. Immunol. 21, 848–856 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Sykulev, Y., Joo, M., Vturina, I., Tsomides, T. J. & Eisen, H. N. Evidence that a single peptide–MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4, 565–571 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Irvine, D. J., Purbhoo, M. A., Krogsgaard, M. & Davis, M. M. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Watanabe, K. et al. Target antigen density governs the efficacy of anti-CD20–CD28–CD3 ζ chimeric antigen receptor-modified effector CD8+ T cells. J. Immunol. 194, 911–920 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Walker, A. J. et al. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol. Ther. 25, 2189–2201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Majzner, R. G. et al. CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin. Cancer Res. 25, 2560–2574 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Majzner, R. G. et al. Tuning the antigen density requirement for car T-cell activity. Cancer Discov. 10, 702–723 (2020). This study demonstrated that modifications to the CAR prototype structure modulate antigen density threshold.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spiegel, J. Y. et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat. Med. 27, 1419–1431 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dong, R. et al. Rewired signaling network in T cells expressing the chimeric antigen receptor (CAR). EMBO J. 39, e104730 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Salter, A. I. et al. Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Sci. Signal. 14, eabe2606 (2021). This study demonstrated diminished recruitment of proximal signaling molecules in CARs compared to TCRs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–90 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heitzeneder, S. et al. GPC2-CAR Tcells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell 40, 53–69.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 568, 112–116 (2019). This study showed that CAR-T trogocytosis could lower the antigen density of target tumor cells and provide an alternative mechanism of resistance to therapy.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. James, S. E. et al. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane. J. Immunol. 180, 7028–7038 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Haso, W. et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121, 1165–1171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019). This study showed that overexpression of c-Jun improves the fitness of CAR-T cells.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hegde, M. et al. Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nat. Commun. 11, 3549 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krenciute, G. et al. Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer Immunol. Res. 5, 571–581 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gardner, R. A. et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129, 3322–3331 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Plaks, V. et al. CD19 target evasion as a mechanism of relapse in large B-cell lymphoma treated with axicabtagene ciloleucel. Blood 138, 1081–1085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cohen, A. D. et al. B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Brudno, J. N. et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol. 36, 2267–2280 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Da Vià, M. C. et al. Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma. Nat. Med. 27, 616–619 (2021).

    Article  PubMed  Google Scholar 

  64. Samur, M. K. et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat. Commun. 12, 868 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Orlando, E. J. et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 24, 1504–1506 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Jacoby, E. et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat. Commun. 7, 12320 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Heard, A. et al. Antigen glycosylation regulates efficacy of CAR T cells targeting CD19. Nat. Commun. 13, 3367 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pont, M. J. et al. γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood 134, 1585–1597 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ramakrishna, S. et al. Modulation of target antigen density improves CAR T-cell functionality and persistence. Clin. Cancer Res. 25, 5329–5341 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leick, M. B. et al. Non-cleavable hinge enhances avidity and expansion of CAR-T cells for acute myeloid leukemia. Cancer Cell 40, 494–508.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Good, C. R. et al. An NK-like CAR Tcell transition in CAR Tcell dysfunction. Cell 184, 6081–6100.e26 (2021). This study used continuous antigen exposure to identify gene signatures associated with CAR dysfunction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Finney, O. C. et al. CD19 CAR T cell product and disease attributes predict leukemia remission durability. J. Clin. Invest. 129, 2123–2132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018). This study identified features of CAR-T immunobiology by comparing responding and non-responding patients with CLL treated with CD19-CAR T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Salter, A. I. et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci. Signal 11, eaat6753 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022). This study identified a subset of CD4+ CD19 CAR-T cells that exhibited extended persistence in CLL patients.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Scholler, J. et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med. 4, 132ra53 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Singh, N. et al. Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nat. Med. 27, 842–850 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Guedan, S. et al. Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability. J. Clin. Invest. 130, 3087–3097 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, W. et al. Chimeric antigen receptor designed to prevent ubiquitination and downregulation showed durable antitumor efficacy. Immunity 53, 456–470.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Yang, Y. et al. TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance. Sci. Transl. Med. 9, eaag1209 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Frank, M. J. et al. Monitoring of circulating tumor DNA improves early relapse detection after axicabtagene ciloleucel infusion in large B-cell lymphoma: results of a prospective multi-institutional trial. J. Clin. Oncol. 39, 3034–3043 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shah, N. N. et al. Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL. J. Clin. Oncol. 39, 1650–1659 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lange, S. et al. A chimeric GM-CSF/IL18 receptor to sustain CAR T-cell function. Cancer Discov. 11, 1661–1671 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mata, M. et al. Inducible activation of myD88 and CD40 in CAR T cells results in controllable and potent antitumor activity in preclinical solid tumor models. Cancer Discov. 7, 1306–1319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Daniels, K. G. et al. Decoding CAR T cell phenotype using combinatorial signaling motif libraries and machine learning. Science 378, eabq0225 (2022).

    Article  Google Scholar 

  88. Goodman, D. B. et al. Pooled screening of CAR T cells identifies diverse immune signaling domains for next-generation immunotherapies. Sci. Transl. Med. 14, eabm1463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gordon, K. S. et al. Screening for CD19-specific chimaeric antigen receptors with enhanced signalling via a barcoded library of intracellular domains. Nat. Biomed. Eng. 6, 855–866 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yan, X. et al. CD58 loss in tumor cells confers functional impairment of CAR T cells. Blood Adv. 6, 5844–5856 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Larson, R. C. et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature 604, 563–570 (2022). This study showed that the IFNγR pathway was required for CAR-T activity against solid but not liquid tumors.

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Donovan, L. K. et al. Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nat. Med. 26, 720–731 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Theruvath, J. et al. Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nat. Med. 26, 712–719 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Priceman, S. J. et al. Regional delivery of chimeric antigen receptor-engineered T cells effectively targets HER2+ breast cancer metastasis to the brain. Clin. Cancer Res. 24, 95–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Vitanza, N. A. et al. Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis. Nat. Med. 27, 1544–1552 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Gauthier, J. et al. Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies. Blood 137, 323–335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Turtle, C. J. et al. CD19 CAR T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 1, 2123–2138 (2016).

    Article  Google Scholar 

  98. Adusumilli, P. S. et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti–PD-1 agent pembrolizumab. Gynecol. Oncol. 11, 2748–2763 (2020).

    Google Scholar 

  99. Adachi, K. et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36, 346–351 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Hegde, M. et al. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J. Clin. Invest. 126, 3036–3052 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Annesley, C. et al. SCRI-CAR19x22v2 T cell product demonstrates bispecific activity in B-ALL. Blood 138, 470 (2021).

    Article  Google Scholar 

  102. Gardner, R. et al. Early clinical experience of CD19 × CD22 dual specific CAR T cells for enhanced anti-leukemic targeting of acute lymphoblastic leukemia. Blood 132, 278 (2018).

    Article  Google Scholar 

  103. Cordoba, S. et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat. Med. 27, 1797–1805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shah, N. N. et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat. Med. 26, 1569–1575 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, Y. et al. Long-term activity of tandem CD19/CD20 CAR therapy in refractory/relapsed B-cell lymphoma: a single-arm, phase 1–2 trial. Leukemia 36, 189–196 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Martin, T. et al. Ciltacabtagene autoleucel, an anti–B-cell maturation antigen chimeric antigen receptor T-Cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J. Clin. Oncol. https://doi.org/10.1200/JCO.22.00842 (2022).

  107. Katsarou, A. et al. Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. Sci. Transl. Med. 13, 1962 (2021).

    Article  Google Scholar 

  108. Johnson, L. R. et al. The immunostimulatory RNA RN7SL1 enables CAR-T cells to enhance autonomous and endogenous immune function. Cell 184, 4981–4995.e14 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Agliardi, G. et al. Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nat. Commun. 12, 444 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Alsaieedi, A., Holler, A., Velica, P., Bendle, G. & Stauss, H. J. Safety and efficacy of Tet-regulated IL-12 expression in cancer-specific T cells. Oncoimmunology 8, 1542917 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Avanzi, M. P. et al. Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system. Cell Rep. 23, 2130–2141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Curran, K. J. et al. Enhancing antitumor efficacy of chimeric antigen receptor T cells through constitutive CD40L expression. Mol. Ther. 23, 769–778 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lai, J. et al. Adoptive cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives epitope spreading and antitumor immunity. Nat. Immunol. 21, 914–926 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Choi, B. D. et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat. Biotechnol. 37, 1049–1058 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018). This study showed that random integration of the CAR into the TET2 locus disrupted the gene and resulted in improved CAR-T function and persistence in a patient with CLL.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Prinzing, B. et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci. Transl. Med. 13, eabh0272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Seo, H. et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 22, 983–995 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ghassemi, S. et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol. Res. 6, 1100–1109 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zheng, W. et al. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia 32, 1157–1167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Good, Z. et al. Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells. Nat. Biotechnol. 37, 259–266 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021). This study showed that CAR-T functionality could be restored and features of exhaustion could be diminished by providing CAR-T cells with periods of rest.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xu, Y. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123, 3750–3759 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, D. et al. Crispr screening of CAR T cells and cancer stem cells reveals critical dependencies for cell-based therapies. Cancer Discov. 11, 1192–1211 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Freitas, K. A. et al. Enhanced T cell effector activity by targeting the Mediator kinase module. Science 378, eabn5647 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019). This study demonstrated enhanced T cell fitness by deletion of exhaustion-associated transcription factors.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dong, M. B. et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell 178, 1189–1204.e23 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. LaFleur, M. W. et al. PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nat. Immunol. 20, 1335–1347 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Carnevale, J. et al. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature 609, 174–182 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. Si, J. et al. Hematopoietic progenitor kinase 1 (HPK1) mediates T cell dysfunction and is a druggable target for T cell-based immunotherapies. Cancer Cell 38, 551–566.e11 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Beavis, P. A. et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J. Clin. Invest. 127, 929–941 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Gomes-Silva, D. et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 130, 285–296 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chun, I. et al. CRISPR–Cas9 knock out of CD5 enhances the anti-tumor activity of chimeric antigen receptor T cells. Blood 136, 51–52 (2020).

    Article  Google Scholar 

  136. Shum, T. et al. Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov. 7, 1238–1247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kagoya, Y. et al. A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior antitumor effects. Nat. Med. 24, 352–359 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020). This study showed that HLA-mismatched, cord blood-derived anti-CD19-CAR natural killer cells were safe and effective against CD19-positive cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hege, K. M. et al. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J. Immunother. Cancer 5, 22 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Brudno, J. N. et al. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat. Med. 26, 270–280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shaim, H. et al. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J. Clin. Invest. 131, e142116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tang, N. et al. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight 5, e133977 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ren, J. et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 8, 17002–17011 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Yamamoto, T. N. et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J. Clin. Invest. 129, 1551–1565 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Rafiq, S. et al. Targeted delivery of a PD-1-blocking scFV by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 36, 847–858 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mohammed, S. et al. Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol. Ther. 25, 249–258 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Oda, S. K. et al. A Fas-4-1BB fusion protein converts a death to a pro-survival signal and enhances T cell therapy. J. Exp. Med. 217, e20191166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liao, Z. et al. Leveraging biomaterials for enhancing T cell immunotherapy. J. Control. Release 344, 272–288 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017). This study demonstrated that genetic engineering of a CAR into the TRAC locus improved T cell fitness compared to viral overexpression.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  151. Straathof, K. C. et al. An inducible caspase 9 safety switch for T-cell therapy. Blood 105, 4247–4254 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bordignon, C. et al. Transfer of the HSV-tk gene into donor peripheral blood lymphocytes for in vivo modulation of donor anti tumor immunity after allogeneic bone marrow transplantation. Hum. Gene Ther. 6, 813–819 (1995).

    Article  CAS  PubMed  Google Scholar 

  153. Wang, X. et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 118, 1255–1263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wiebking, V. et al. Metabolic engineering generates a transgene-free safety switch for cell therapy. Nat. Biotechnol. 38, 1441–1450 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Sakemura, R. et al. A Tet-On inducible system for controlling CD19-chimeric antigen receptor expression upon drug administration. Cancer Immunol. Res. 4, 658–668 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Wu, C.-Y., Roybal, K. T., Puchner, E. M., Onuffer, J. & Lim, W. A. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 350, aab4077 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  157. Jan, M. et al. Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci. Transl. Med. 13, eabb6295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Giordano-Attianese, G. et al. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nat. Biotechnol. 38, 426–432 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Zajc, C. U. et al. A conformation-specific ON-switch for controlling CAR T cells with an orally available drug. Proc. Natl Acad. Sci. USA 117, 14926–14935 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lee, S. M. et al. A chemical switch system to modulate chimeric antigen receptor T cell activity through proteolysis-targeting chimaera technology. ACS Synth. Biol. 9, 987–992 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Richman, S. A. et al. Ligand-induced degradation of a CAR permits reversible remote control of CAR T cell activity in vitro and in vivo. Mol. Ther. 28, 1932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Labanieh, L. et al. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell 185, 1745–1763.e22 (2022). The SNIP drug-regulated CAR system manifested a full dynamic range of activity devoid of leakiness, and in a ROR1 toxicity model could be tuned to selectively target tumour cells expressing high levels of ROR1 while sparing healthy cells expressing low levels of ROR1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, H.-S. et al. High-performance multiplex drug-gated CAR circuits. Cancer Cell 40, 1294–1305 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Hyrenius-Wittsten, A. et al. SynNotch CAR circuits enhance solid tumor recognition and promote persistent antitumor activity in mouse models. Sci. Transl. Med. 13, eabd8836 (2021). This study demonstrated that SynNotch-inducible CAR-T cells have lower tonic signalling, greater stemness and enhanced potency compared with conventional CAR-T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hernandez-Lopez, R. A. et al. T cell circuits that sense antigen density with an ultrasensitive threshold. Science 371, 1166–1171 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  166. Van Oekelen, O. et al. Neurocognitive and hypokinetic movement disorder with features of parkinsonism after BCMA-targeting CAR-T cell therapy. Nat. Med. 27, 2099–2103 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Lamers, C. H. J. et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: Clinical evaluation and management of on-target toxicity. Mol. Ther. 21, 904–912 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Thistlethwaite, F. C. et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol. Immunother. 66, 1425–1436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Straathof, K. et al. Antitumor activity without on-target off-tumor toxicity of GD2-chimeric antigen receptor T cells in patients with neuroblastoma. Sci. Transl. Med. 12, eabd6169 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Mount, C. W. et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas letter. Nat. Med. 24, 572–579 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Narayan, V. et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 28, 724–734 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Roybal, K. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhu, I. et al. Modular design of synthetic receptors for programmed gene regulation in cell therapies. Cell 185, 1431–1443.e16 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Srivastava, S. et al. Logic-gated ROR1 chimeric antigen receptor expression rescues T cell-mediated toxicity to normal tissues and enables selective tumor targeting. Cancer Cell 35, 489–503.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Tousley, A. M. et al. Coopting T cell proximal signaling molecules enables Boolean logic-gated CAR T cell control. Preprint at bioRxiv https://doi.org/10.1101/2022.06.17.496457 (2022). LINK CAR utilizes proximal signalling molecules fused to membrane-bound scFvs to create an AND-gated CAR system.

  177. Cho, J. H., Collins, J. J. & Wong, W. W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173, 1426–1438.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lajoie, M. J. et al. Designed protein logic to target cells with precise combinations of surface antigens. Science 369, 1637–1643 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  179. Fedorov, V. D., Themeli, M. & Sadelain, M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med. 5, 215ra172 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Richards, R. M. et al. NOT-gated CD93 CAR T cells effectively target AML with minimized endothelial cross-reactivity. Blood Cancer Discov. 2, 648–665 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tokatlian, T. et al. Mesothelin-specific CAR-T cell therapy that incorporates an HLA-gated safety mechanism selectively kills tumor cells. J. Immunother. Cancer 10, e003826 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Mansilla-Soto, J. et al. HLA-independent T cell receptors for targeting tumors with low antigen density. Nat. Med. 28, 345–352 (2022). This study showed that T cells expressing HIT receptors targeted to the TRAC locus are able to recognize and kill tumour cells with low antigen density.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liu, Y. et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci. Transl. Med. 13, eabb5191 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Xu, Y. et al. A novel antibody–TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov. 4, 62 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Baeuerle, P. A. et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat. Commun. 10, 2087 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  186. Burton, J. et al. Inefficient exploitation of accessory receptors reduces the sensitivity of chimeric antigen receptors. Preprint at bioRxiv https://doi.org/10.1101/2021.10.26.465853 (2022).

  187. Yarmarkovich, M. et al. Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs. Nature 599, 477–484 (2021). The authors developed a peptide-centric CAR targeting a peptide derived from an intracellular protein that is overexpressed in neuroblastoma.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  188. Maschan, M. et al. Multiple site place-of-care manufactured anti-CD19 CAR-T cells induce high remission rates in B-cell malignancy patients. Nat. Commun. 12, 7200 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  189. Pearson, A. D. et al. Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer. Eur. J. Cancer 160, 112–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Benjamin, R. et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet 396, 1885–1894 (2020). This study showed the feasibility of using allogeneic, genome-edited CAR T cells.

    Article  CAS  PubMed  Google Scholar 

  191. Kagoya, Y. et al. Genetic ablation of HLA class I, class II, and the T-cell receptor enables allogeneic T cells to be used for adoptive T-cell therapy. Cancer Immunol. Res. 8, 926–936 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Wang, B. et al. Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nat. Biomed. Eng. 5, 429–440 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Hu, X. et al. Engineered hypoimmune allogeneic CAR T cells exhibit innate and adaptive immune evasion even after sensitization in humanized mice and retain potent anti-tumor activity. Blood 138, 1690 (2021).

    Article  Google Scholar 

  194. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Simonetta, F. et al. Allogeneic CAR invariant natural killer T cells exert potent antitumor effects through host CD8 T-cell cross-priming. Clin. Cancer Res. 27, 6054–6064 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Heczey, A. et al. Anti-GD2 CAR-NKT cells in patients with relapsed or refractory neuroblastoma: an interim analysis. Nat. Med. 26, 1686–1690 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. Neelapu, S. S. et al. A phase 1 study of ADI-001: anti-CD20 CAR-engineered allogeneic gamma delta (γδ) T cells in adults with B-cell malignancies. J. Clin. Oncol. 40, 7509 (2022).

    Article  Google Scholar 

  198. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020). The authors adapted vectors for efficient viral gene delivery of a CAR to macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Morrissey, M. A. et al. Chimeric antigen receptors that trigger phagocytosis. eLife 7, e36688 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Themeli, M. et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat. Biotechnol. 31, 928–933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhu, H. et al. Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell 27, 224–237.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhang, L. et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J. Hematol. Oncol. 13, 153 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Bachanova, V. et al. Safety and efficacy of FT596, a first-in-class, multi-antigen targeted, off-the-shelf, iPSC-derived CD19 CAR NK cell therapy in relapsed/refractory B-cell lymphoma. Blood 138, 823 (2021).

    Article  Google Scholar 

  204. Wang, Z. et al. 3D-organoid culture supports differentiation of human CAR+ iPSCs into highly functional CAR Tcells. Cell Stem Cell 29, 515–527.e8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018). The authors developed a non-viral approach to engineer T cells with genomic precision.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  206. Zhang, J. et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature 609, 369–374 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  207. Shy, B. R. et al. High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails. Nat. Biotechnol. https://doi.org/10.1038/S41587-022-01418-8 (2022).

  208. Micklethwaite, K. P. et al. Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells. Blood 138, 1391–1405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Weidner, T. et al. Genetic in vivo engineering of human T lymphocytes in mouse models. Nat. Protoc. 16, 3210–3240 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 1–21 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  211. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022). This study utilized CD5-targeting nanoparticles for in vivo gene engineering of T cells to treat cardiac fibrosis.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kansal, R. et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci. Transl. Med. 11, eaav1648 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Mougiakakos, D. et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 385, 567–569 (2021). This case report showed a strong clinical benefit for treatment of systemic lupus erythematosus with CD19-CAR T cells.

    Article  PubMed  Google Scholar 

  214. Raffin, C., Vo, L. T. & Bluestone, J. A. Treg cell-based therapies: challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. MacDonald, K. G. et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J. Clin. Invest. 126, 1413–1424 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Noyan, F. et al. Prevention of allograft rejection by use of regulatory T cells with an MHC-specific chimeric antigen receptor. Am. J. Transplant. 17, 917–930 (2017).

    Article  CAS  PubMed  Google Scholar 

  217. Good, Z. et al. Post-infusion CAR Treg cells identify patients resistant to CD19-CAR therapy. Nat. Med. 28, 1860–1871 (2022).

    Article  CAS  PubMed  Google Scholar 

  218. Haradhvala, N. J. et al. Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nat. Med. 28, 1848–1859 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Fu, R. Y. et al. CD4+ T cells engineered with FVIII-CAR and murine Foxp3 suppress anti-factor VIII immune responses in hemophilia a mice. Cell. Immunol. 358, 104216 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020). This study showed that CAR T cells directed against the urokinase-type plasminogen activator receptor could be used as senolytic agents.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  221. Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  222. Jacobson, C. A. et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial. Lancet Oncol. 23, 91–103 (2022).

    Article  CAS  PubMed  Google Scholar 

  223. Shah, B. D. et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 398, 491–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Frank, M. J. et al. CD22-CAR T-cell therapy mediates high durable remission rates in adults with large B-cell lymphoma who have relapsed after CD19-CAR T-cell therapy. Blood 138, 741 (2021).

    Article  Google Scholar 

  225. Cui, Q. et al. CD38-directed CAR-T cell therapy: a novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. J. Hematol. Oncol. 14, 82 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ramos, C. A. et al. Clinical responses with T lymphocytes targeting malignancy-associated κ light chains. J. Clin. Invest. 126, 2588–2596 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Majzner, R. G. et al. Major tumor regressions in H3K27M-mutated diffuse midline glioma (DMG) following sequential intravenous (IV) and intracerebroventricular (ICV) delivery of GD2-CAR T cells. Cancer Res. 82, CT001 (2022).

    Article  Google Scholar 

  229. Navai, S. A. et al. Administration of HER2-CAR T cells after lymphodepletion safely improves T cell expansion and induces clinical responses in patients with advanced sarcomas. Cancer Res. 79, LB147 (2019).

    Article  Google Scholar 

  230. Guo, Y. et al. Phase I study of chimeric antigen receptor–modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin. Cancer Res. 24, 1277–1286 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  231. Irving, B. A. & Weiss, A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64, 891–901 (1991).

    Article  CAS  PubMed  Google Scholar 

  232. Levine, B. L. et al. Large-scale production of CD4+ T cells from HIV-1-infected donors after CD3/CD28 costimulation. J. Hematotherapy Stem Cell Res. 7, 437–448 (1998).

    CAS  Google Scholar 

  233. Haynes, N. M. et al. Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood 100, 3155–3163 (2002).

    Article  CAS  PubMed  Google Scholar 

  234. Fry, T. J. et al. A potential role for interleukin-7 in T-cell homeostasis. Blood 97, 2983–2990 (2001).

    Article  CAS  PubMed  Google Scholar 

  235. Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  236. Pule, M. A. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Milone, M. C. et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453–1464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Brentjens, R. J. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118, 4817–4828 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Savoldo, B. et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Invest. 121, 1822–1826 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–33 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Hudecek, M. et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin. Cancer Res. 19, 3153–3164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Landoni, E. et al. Modifications to the framework regions eliminate chimeric antigen receptor tonic signaling. Cancer Immunol. Res. 9, 441–453 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Awasthi, R. et al. Tisagenlecleucel cellular kinetics, dose, and immunogenicity in relation to clinical factors in relapsed/refractory DLBCL. Blood Adv. 4, 560–572 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Leddon, S. A. et al. The CD28 transmembrane domain contains an essential dimerization motif. Front. Immunol. 11, 1519 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Bridgeman, J. S. et al. The optimal antigen response of chimeric antigen receptors harboring the CD3 transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J. Immunol. 184, 6938–6949 (2010).

    Article  CAS  PubMed  Google Scholar 

  247. Fujiwara, K. et al. Hinge and transmembrane domains of chimeric antigen receptor regulate receptor expression and signaling threshold. Cells 9, 1182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Brentjens, R. J. et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med. 9, 279–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  249. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    Article  CAS  PubMed  Google Scholar 

  250. Yan, Z. et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial. Lancet Haematol. 6, e521–e529 (2019).

    Article  PubMed  Google Scholar 

  251. Schneider, D. et al. Trispecific CD19–CD20–CD22-targeting duoCAR-T cells eliminate antigen-heterogeneous B cell tumors in preclinical models. Sci. Transl. Med. 13, eabc6401 (2021).

    Article  CAS  PubMed  Google Scholar 

  252. Kloss, C. C., Condomines, M., Cartellieri, M., Bachmann, M. & Sadelain, M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol. 31, 71–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  253. Han, X. et al. Masked chimeric antigen receptor for tumor-specific activation. Mol. Ther. 25, 274–284 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Kosti, P. et al. Hypoxia-sensing CAR T cells provide safety and efficacy in treating solid tumors. Cell Rep. Med. 2, 100227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Ho, P., Ede, C. & Chen, Y. Y. Modularly constructed synthetic granzyme B molecule enables interrogation of intracellular proteases for targeted cytotoxicity. ACS Synth. Biol. 6, 1484–1495 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 374–388 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  258. Yang, W. et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 531, 651–655 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  259. Jung, I. Y. et al. CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells. Cancer Res. 78, 4692–4703 (2018).

    Article  CAS  PubMed  Google Scholar 

  260. Zhang, Y. et al. CRISPR–Cas9 mediated LAG-3 disruption in CAR-T cells. Front. Med. 11, 554–562 (2017).

    Article  PubMed  Google Scholar 

  261. Sterner, R. M. et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 133, 697–709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Qasim, W. et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 9, eaaj2013 (2017).

    Article  PubMed  Google Scholar 

  263. Johnson, A. J. et al. Rationally designed transgene-encoded cell-surface polypeptide tag for multiplexed programming of CAR T-cell synthetic outputs. Cancer Immunol. Res. 9, 1047–1060 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Becerra, C. R. et al. Ligand-inducible, prostate stem cell antigen (PSCA)-directed GoCAR-T cells in advanced solid tumors: preliminary results from a dose escalation. J. Clin. Oncol. 37, 282–283 (2019).

    Google Scholar 

  265. Munoz, J. et al. A phase 1 study of ACTR087 in combination with rituximab, in subjects with relapsed or refractory CD20-positive B-cell lymphoma. Blood 134, 244 (2019).

    Article  Google Scholar 

  266. Ma, J. S. Y. et al. Versatile strategy for controlling the specificity and activity of engineered T cells. Proc. Natl Acad. Sci. USA 113, E450–E458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Nikolaenko, L. et al. First in human study of an on/off switchable CAR-T cell platform targeting CD19 for B cell malignancies (CLBR001 + SWI019). Blood 138, 2822 (2021).

    Article  Google Scholar 

  268. Frigault, M. J. et al. Phase 1 study of CART-ddBCMA in relapsed or refractory multiple myeloma. J. Clin. Oncol. 40, 8003–8003 (2022).

    Article  Google Scholar 

  269. Wu, Y. et al. Control of the activity of CAR-T cells within tumours via focused ultrasound. Nat. Biomed. Eng. 5, 1336–1347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Allen, M. E. et al. An AND-gated drug and photoactivatable Cre- loxP system for spatiotemporal control in cell-based therapeutics. ACS Synth. Biol. 8, 2359–2371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. O’Cearbhaill, R. E. et al. A phase I clinical trial of autologous chimeric antigen receptor (CAR) T cells genetically engineered to secrete IL-12 and to target the MUC16ecto antigen in patients (pts) with MUC16ecto+ recurrent high-grade serous ovarian cancer (HGSOC). Gynecol. Oncol. 159, 42 (2020).

    Article  Google Scholar 

  272. Hu, B. et al. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 20, 3025–3033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Svoboda, J. et al. Interleukin-18 secreting autologous anti-CD19 CAR T-cells (huCART19-IL18) in patients with non-Hodgkin lymphomas relapsed or refractory to prior CAR T-cell therapy. Blood 140, 4612–4614 (2022).

    Article  Google Scholar 

  274. Zhang, L. et al. Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol. Ther. 19, 751–759 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Batra, S. A. et al. Glypican-3-specific CAR T cells coexpressing IL15 and IL21 have superior expansion and antitumor activity against hepatocellular carcinoma. Cancer Immunol. Res. 8, 309–320 (2020).

    Article  CAS  PubMed  Google Scholar 

  276. Liu, X. et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 76, 1578–1590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Papa, S. et al. A phase I trial of T4 CAR T-cell immunotherapy in head and neck squamous cancer (HNSCC). J. Clin. Oncol. 36, 3046–3046 (2018).

    Article  Google Scholar 

  278. Kakarla, S. et al. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol. Ther. 21, 1611–1620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Caruana, I. et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 21, 524–9 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Ligtenberg, M. A. et al. Coexpressed catalase protects chimeric antigen receptor-redirected T cells as well as bystander cells from oxidative stress-induced loss of antitumor activity. J. Immunol. 196, 759–66 (2016).

    Article  CAS  PubMed  Google Scholar 

  281. Boice, M. et al. Loss of the HVEM tumor suppressor in lymphoma and restoration by modified CAR-T Cells. Cell 167, 405–418.e13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Newick, K. et al. Augmentation of CAR T-cell trafficking and antitumor efficacy by blocking protein kinase a localization. Cancer Immunol. Res. 4, 541–551 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Li, G. et al. CXCR5 guides migration and tumor eradication of anti-EGFR chimeric antigen receptor T cells. Mol. Ther. 22, 507–517 (2021).

    CAS  Google Scholar 

  284. Di Stasi, A. et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113, 6392–6402 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Craddock, J. A. et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J. Immunother. 33, 780–788 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Siddiqui, I., Erreni, M., van Brakel, M., Debets, R. & Allavena, P. Enhanced recruitment of genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing tumors: importance of the chemokine gradient. J. Immunother. Cancer 4, 21 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Feng, J. et al. Treatment of aggressive T cell lymphoblastic lymphoma/leukemia using anti-CD5 CAR T cells. Stem Cell Rev. Rep. 17, 652–661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Hurton, L. V. et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc. Natl Acad. Sci. USA 113, E7788–E7797 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Hunter, M. R. et al. Chimeric γc cytokine receptors confer cytokine independent engraftment of human T lymphocytes. Mol. Immunol. 56, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  290. Zhang, Q. et al. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci. Transl. Med. 13, eabg6986 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Kalbasi, A. et al. Potentiating adoptive cell therapy using synthetic IL-9 receptors. Nature 607, 360–365 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  292. Krause, A. et al. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J. Exp. Med. 188, 619–626 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  294. Kamiya, T., Wong, D., Png, Y. T. & Campana, D. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells. Blood Adv. 2, 517–528 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.L.M. and L.L are members of the Parker Institute for Cancer Immunotherapy, which supports the Stanford University Cancer Immunotherapy Program. This work was supported by the St Baldrick’s Foundation Empowering Pediatric Immunotherapies for Childhood Cancer (EPICC) Team and NCI 5P30CA124435 (C.L.M.). L.L. was supported by a Siebel Scholars Fellowship, Stanford Graduate Fellowship, National Science Foundation Graduate Research Fellowship (DGE-1656518), and Discovery Innovation Award philanthropically supported through the Biomedical Innovation Initiative.

Author information

Authors and Affiliations

Authors

Contributions

L.L. and C.L.M. conceptualized, wrote and edited the manuscript.

Corresponding author

Correspondence to Crystal L. Mackall.

Ethics declarations

Competing interests

L.L. and C.L.M. are inventors on several patents related to CAR T cell therapies. C.L.M. is a cofounder of Lyell Immunopharma, CARGO Therapeutics and Link Cell Therapies, which are developing CAR-based therapies, and consults for Lyell, Syncopation, Link, Apricity, Nektar, Immatics, Ensoma, Mammoth, Glaxo Smith Kline and Bristol Myers Squibb. L.L. is a cofounder of, consults for, and holds equity in CARGO Therapeutics. L.L. is a consultant for and holds equity in Lyell Immunopharma.

Peer review

Peer review information

Nature thanks Justin Eyquem, Kristen Hege, Hans Stauss and Jie Sun for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labanieh, L., Mackall, C.L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023). https://doi.org/10.1038/s41586-023-05707-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05707-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing