Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cleaving arene rings for acyclic alkenylnitrile synthesis

Abstract

Synthetic chemistry is built around the formation of carbon–carbon bonds. However, the development of methods for selective carbon–carbon bond cleavage is a largely unmet challenge1,2,3,4,5,6. Such methods will have promising applications in synthesis, coal liquefaction, petroleum cracking, polymer degradation and biomass conversion. For example, aromatic rings are ubiquitous skeletal features in inert chemical feedstocks, but are inert to many reaction conditions owing to their aromaticity and low polarity. Over the past century, only a few methods under harsh conditions have achieved direct arene-ring modifications involving the cleavage of inert aromatic carbon–carbon bonds7,8, and arene-ring-cleavage reactions using stoichiometric transition-metal complexes or enzymes in bacteria are still limited9,10,11. Here we report a copper-catalysed selective arene-ring-opening reaction strategy. Our aerobic oxidative copper catalyst converts anilines, arylboronic acids, aryl azides, aryl halides, aryl triflates, aryl trimethylsiloxanes, aryl hydroxamic acids and aryl diazonium salts into alkenyl nitriles through selective carbon–carbon bond cleavage of arene rings. This chemistry was applied to the modification of polycyclic aromatics and the preparation of industrially important hexamethylenediamine and adipic acid derivatives. Several examples of the late-stage modification of complex molecules and fused ring compounds further support the potential broad utility of this methodology.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Cleaving arene rings.
Fig. 2: Scope of polycyclic aromatic compounds and transformations to ortho(cis-cyanovinyl) arylnitriles.
Fig. 3: The cleavage of anilines and phenylboronic acids and downstream transformations.
Fig. 4: Mechanism studies.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. National Research Council (US) Health and Medicine: Challenges for the Chemical Sciences in the 21st Century (National Academies Press, 2004).

    Google Scholar 

  2. Jones, W. D. The fall of the C–C bond. Nature 364, 676–677 (1993).

    Article  ADS  Google Scholar 

  3. Zhu, J., Wang, J. & Dong, G. Catalytic activation of unstrained C(aryl) –C(aryl) bonds in 2,2′-biphenols. Nat. Chem. 11, 45–51 (2019).

    CAS  PubMed  Article  Google Scholar 

  4. Guengerich, F. P. & Yoshimoto, F. K. Formation and cleavage of C–C Bonds by enzymatic oxidation–reduction reactions. Chem. Rev. 118, 6573–6655 (2018).

    CAS  PubMed  Article  Google Scholar 

  5. Jakoobi, M. & Sergeev, A. G. Transition-metal-mediated cleavage of C–C bonds in aromatic rings. Chem. Asian J. 14, 2181–2192 (2019).

    CAS  PubMed  Article  Google Scholar 

  6. Murakami, M. & Chatani, N. Cleavage of Carbon–Carbon Single Bonds by Transition Metals (Wiley, 2015).

  7. Mortier, J. Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds (Wiley, 2015).

  8. Benitez, V. M., Grau, J. M., Yori, J. C., Pieck, C. L. & Vera, C. R. Hydroisomerization of benzene-containing paraffinic feedstocks over Pt/WO3–ZrO2 catalysts. Energy Fuels 20, 1791–1798 (2006).

    CAS  Article  Google Scholar 

  9. Sattler, A. & Parkin, G. Cleaving carbon–carbon bonds by inserting tungsten into unstrained aromatic rings. Nature 463, 523–526 (2010).

    CAS  PubMed  Article  ADS  Google Scholar 

  10. Hu, S., Shima, T. & Hou, Z. Carbon–carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride. Nature 512, 413–415 (2014).

    CAS  PubMed  Article  ADS  Google Scholar 

  11. Bugg, T. D. H. & Winfield, C. J. Enzymatic cleavage of aromatic rings: mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathways. Nat. Prod. Rep. 15, 513–530 (1998).

    CAS  Article  Google Scholar 

  12. Wilson, J. Celebrating Michael Faraday’s discovery of benzene. Ambix 59, 241–265 (2013).

    Article  CAS  Google Scholar 

  13. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    CAS  PubMed  Article  ADS  Google Scholar 

  14. Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).

    CAS  PubMed  Article  Google Scholar 

  15. Wang, Y., Li, J. & Liu, A. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. J. Biol. Inorg. Chem. 22, 395–405 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Siddiqi, Z., Wertjes, W. C. & Sarlah, D. Chemical equivalent of arene monooxygenases: dearomative synthesis of arene oxides and oxepines. J. Am. Chem. Soc. 142, 10125–10131 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Kong, R. Y. & Crimmin, M. R. Chemoselective C–C σ‐bond activation of the most stable ring in biphenylene. Angew. Chem. Int. Ed. 60, 2619–2623 (2021).

    CAS  Article  Google Scholar 

  18. Nakagawa, K. & Onoue, H. Oxidation of o-phenylenediamines with lead tetra-acetate. Chem. Commun. (London) 396a (1965).

  19. Nakagawa, K. & Onoue, H. Oxidation with nickel peroxide. V. The formation of cis,cis-1,4-dicyano-1,3-butadienes in the oxidation of o-phenylendiamines. Tetrahedr. Lett. 6, 1433–1436 (1965).

    Article  Google Scholar 

  20. Kajimoto, T., Takahashi, H. & Tsuji, J. Copper-catalyzed oxidation of o-phenylenediamines to cis,cis-mucononitriles. J. Org. Chem. 41, 1389–1393 (1976).

    CAS  Article  Google Scholar 

  21. Buchner, E. & Curtius, T. Synthese von Ketonsäureäthern aus Aldehyden und Diazoessigäther. Ber. Dtsch. Chem. Ges. 18, 2371–2377 (1885).

    Article  Google Scholar 

  22. Chapman, O. L. & Leroux, J. P. 1-Aza-1,2,4,6-cycloheptatetraene. J. Am. Chem. Soc. 100, 282–285 (1978).

    CAS  Article  Google Scholar 

  23. Satake, K., Mizushima, H., Kimura, M. & Morosawa, S. The reactions of nitrene for the conjugated π-systems. Heterocycles 23, 195 (1985).

    Article  Google Scholar 

  24. Liu, L. L. et al. A transient vinylphosphinidene via a phosphirene-phosphinidene rearrangement. J. Am. Chem. Soc. 140, 147–150 (2018).

    CAS  PubMed  Article  Google Scholar 

  25. Hall, J. H. Dinitrenes from o-diazides. synthesis of 1,4-dicyano-1,3-butadienes. J. Am. Chem. Soc. 87, 1147–1148 (1965).

    CAS  Article  Google Scholar 

  26. Campbell, C. D. & Rees, C. W. Oxidation of 1- and 2-aminobenzotriazole. Chem. Commun. (London) 192–193 (1965).

  27. Nicolaides, A. et al. Of ortho-conjugatively linked reactive intermediates: the cases of ortho-phenylene-(bis)nitrene, -carbenonitrene, and -(bis)carbene. J. Am. Chem. Soc. 121, 10563–10572 (1999).

  28. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    CAS  Article  Google Scholar 

  29. Chen, Y., Kamlet, A. S., Steinman, J. B. & Liu, D. R. A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. Nat. Chem. 3, 146–153 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. Prescher, J. A., Dube, D. H. & Bertozzi, C. R. Chemical remodelling of cell surfaces in living animals. Nature 430, 873–877 (2004).

    CAS  PubMed  Article  ADS  Google Scholar 

  31. Haag, S. M. et al. Targeting STING with covalent small-molecule inhibitors. Nature 559, 269–273 (2018).

    CAS  PubMed  Article  ADS  Google Scholar 

  32. Meng, G. et al. Modular click chemistry libraries for functional screens using a diazotizing reagent. Nature 574, 86–89 (2019).

    CAS  PubMed  Article  ADS  Google Scholar 

  33. Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517, 600–604 (2015).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  34. Zhdankin, V. V. et al. Preparation, X-ray crystal structure, and chemistry of stable azidoiodinanes derivatives of benziodoxole. J. Am. Chem. Soc. 118, 5192–5197 (1996).

    CAS  Article  Google Scholar 

  35. Huang, X., Bergsten, T. M. & Groves, J. T. Manganese-catalyzed late-stage aliphatic C–H azidation. J. Am. Chem. Soc. 137, 5300–5303 (2015).

    CAS  PubMed  Article  Google Scholar 

  36. Schmidt, K. F. Über die Einwirkung von NH auf organische Verbindungen. Angew. Chem. 36, 511 (1923).

    Google Scholar 

  37. Schmidt, K. F. Über den Imin-Rest. Ber. Dtsch. Chem. Ges. 57B, 704–706 (1924).

    CAS  Article  Google Scholar 

  38. Liu, J. et al. From alkylarenes to anilines via site-directed carbon–carbon amination. Nat. Chem. 11, 71–77 (2018).

    PubMed  Article  CAS  Google Scholar 

  39. Fu, N., Sauer, G. S., Saha, A., Loo, A. & Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Science 357, 575–579 (2017).

    CAS  PubMed  Article  ADS  Google Scholar 

  40. Scriven, E. F. V. & Turnbull, K. Azides: their preparation and synthetic uses. Chem. Rev. 88, 297–368 (1988).

    CAS  Article  Google Scholar 

  41. Lombardi, F. et al. Quantum units from the topological engineering of molecular graphenoids. Science 366, 1107–1110 (2019).

    CAS  PubMed  Article  ADS  Google Scholar 

  42. Kolmer, M. et al. Fluorine-programmed nanozipping to tailored nanographenes on rutile TiO2 surfaces. Science 363, 57–60 (2019).

    CAS  PubMed  Article  ADS  Google Scholar 

  43. Yano, Y. et al. Living annulative pi-extension polymerization for graphene nanoribbon synthesis. Nature 571, 387–392 (2019).

    CAS  PubMed  Article  ADS  Google Scholar 

  44. Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005).

    CAS  PubMed  Article  ADS  Google Scholar 

  45. Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    CAS  PubMed  Article  ADS  Google Scholar 

  46. Bakhoda, A. G., Jiang, Q., Bertke, J. A., Cundari, T. R. & Warren, T. H. Elusive terminal copper arylnitrene intermediates. Angew. Chem. Int. Ed. 56, 6426–6430 (2017).

    CAS  Article  Google Scholar 

  47. Carsch, K. M. et al. Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination. Science 365, 1138–1143 (2019).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  48. Allen, S. E., Walvoord, R. R., Padilla-Salinas, R. & Kozlowski, M. C. Aerobic copper-catalyzed organic reactions. Chem. Rev. 113, 6234–6458 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. McCann, S. D. & Stahl, S. S. Copper-catalyzed aerobic oxidations of organic molecules: pathways for two-electron oxidation with a four-electron oxidant and a one-electron redox-active catalyst. Acc. Chem. Res. 48, 1756–1766 (2015).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the NSFC (grant numbers 21632001, 21772002, 81821004, 21933004), the National Key Research and Development Project (grant number 2019YFC1708902), and the US National Science Foundation (CHE-1764328) for financial support of this research.

Author information

Authors and Affiliations

Authors

Contributions

N.J. conceived the project and directed the research. K.N.H. and X.-S.X. supervised the mechanistic study. X.Q., Y.S., X.-S.X., K.N.H. and N.J. wrote the paper. X.Q., H.W., Z.Y., Y.W., Z.C. and X.W. performed the experiments. Y.S. performed the DFT calculations. H.T, S.S., G.Z. and X.Z. discussed the results.

Corresponding authors

Correspondence to K. N. Houk or Ning Jiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Adrian Mulholland and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Downstream transformations and mechanism studies.

a, Downstream transformations of alkenyl nitriles. b, The excluded intermediates. c, HOMO(α) and HOMO-1(β) of the triplet copper bis-nitrene intermediate. *See Supplementary Information for experimental details.

Supplementary information

Supplementary Information

This file contains Supplementary Information (see Table of Contents in PDF for full description).

Supplementary Data

This file contains the crystal structure of 48 in Fig 3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., Sang, Y., Wu, H. et al. Cleaving arene rings for acyclic alkenylnitrile synthesis. Nature 597, 64–69 (2021). https://doi.org/10.1038/s41586-021-03801-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03801-y

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing