Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for extremely rapid magma ocean crystallization and crust formation on Mars

Abstract

The formation of a primordial crust is a critical step in the evolution of terrestrial planets but the timing of this process is poorly understood. The mineral zircon is a powerful tool for constraining crust formation because it can be accurately dated with the uranium-to-lead (U–Pb) isotopic decay system and is resistant to subsequent alteration. Moreover, given the high concentration of hafnium in zircon, the lutetium-to-hafnium (176Lu–176Hf) isotopic decay system can be used to determine the nature and formation timescale of its source reservoir1,2,3. Ancient igneous zircons with crystallization ages of around 4,430 million years (Myr) have been reported in Martian meteorites that are believed to represent regolith breccias from the southern highlands of Mars4,5. These zircons are present in evolved lithologies interpreted to reflect re-melted primary Martian crust4, thereby potentially providing insight into early crustal evolution on Mars. Here, we report concomitant high-precision U–Pb ages and Hf-isotope compositions of ancient zircons from the NWA 7034 Martian regolith breccia. Seven zircons with mostly concordant U–Pb ages define 207Pb/206Pb dates ranging from 4,476.3 ± 0.9 Myr ago to 4,429.7 ± 1.0 Myr ago, including the oldest directly dated material from Mars. All zircons record unradiogenic initial Hf-isotope compositions inherited from an enriched, andesitic-like crust extracted from a primitive mantle no later than 4,547 Myr ago. Thus, a primordial crust existed on Mars by this time and survived for around 100 Myr before it was reworked, possibly by impacts4,5, to produce magmas from which the zircons crystallized. Given that formation of a stable primordial crust is the end product of planetary differentiation, our data require that the accretion, core formation and magma ocean crystallization on Mars were completed less than 20 Myr after the formation of the Solar System. These timescales support models that suggest extremely rapid magma ocean crystallization leading to a gravitationally unstable stratified mantle, which subsequently overturns, resulting in decompression melting of rising cumulates and production of a primordial basaltic to andesitic crust6,7.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: U–Pb concordia diagram for seven zircon grains from the NWA 7034 meteorite.
Fig. 2: Hf isotope evolution diagrams.

References

  1. Stevenson, R. K. & Patchett, P. J. Implications for the evolution of continental-crust from Hf-isotope systematics of Archean detrital zircons. Geochim. Cosmochim. Acta 54, 1683–1697 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Amelin, Y., Lee, D.-C., Halliday, A. N. & Pidgeon, R. T. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252–255 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Amelin, Y., Lee, D.-C. & Halliday, A. N. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single grain zircons. Geochim. Cosmochim. Acta 64, 4205–4225 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Humayun, M. et al. Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 503, 513–516 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  5. McCubbin, F. M. et al. Geologic history of Martian regolith breccia Northwest Africa 7034: evidence for hydrothermal activity and lithologic diversity in the Martian crust. J. Geophys. Res. Planets 121, 2120–2149 (2016).

    Article  ADS  CAS  Google Scholar 

  6. Elkins-Tanton, L. T., Hess, P. C. & Parmentier, E. M. Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. Planets 110, E12S01 (2005).

    Article  ADS  Google Scholar 

  7. Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).

    Article  ADS  CAS  Google Scholar 

  8. Dauphas, N. & Pourmand, A. Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Nimmo, F. & Tanaka, K. Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci. 33, 133–161 (2005).

    Article  ADS  CAS  Google Scholar 

  10. Borg, L. E., Brennecka, G. A. & Symes, S. J. K. Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites. Geochim. Cosmochim. Acta 175, 150–167 (2016).

    Article  ADS  CAS  Google Scholar 

  11. Caro, G. Early silicate Earth differentiation. Annu. Rev. Earth Planet. Sci. 39, 31–58 (2011).

    Article  ADS  CAS  Google Scholar 

  12. Carlson, R. W. et al. How did early Earth become our modern world? Annu. Rev. Earth Planet. Sci. 42, 151–178 (2014).

    Article  ADS  CAS  Google Scholar 

  13. McSween, H. Y. Petrology on Mars. Am. Mineral. 100, 2380–2395 (2015).

    Article  ADS  Google Scholar 

  14. Schiller, M., Bizzarro, M. & Fernandes, V. A. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and Moon. Nature 555, 507–510 (2018).

    Article  ADS  PubMed  CAS  PubMed Central  Google Scholar 

  15. Debaille, V., Brandon, A. D., Yin, Q.-Z. & Jacobsen, B. Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars. Nature 450, 525–528 (2007).

    Article  ADS  PubMed  CAS  Google Scholar 

  16. Kruijer, T. S. et al. The early differentiation of Mars inferred from Hf-W chronometry. Earth Planet. Sci. Lett. 474, 345–354 (2017).

    Article  ADS  CAS  Google Scholar 

  17. Whitehouse, M. J., Nemchin, A. A. & Pidgeon, R. T. What can Hadean detrital zircon really tell us? A critical evaluation of their geochronology with implications for the interpretation of oxygen and hafnium isotopes. Gondwana Res. 51, 78–91 (2017).

    Article  ADS  CAS  Google Scholar 

  18. Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008).

    Article  ADS  CAS  Google Scholar 

  19. Bizzarro, M., Baker, J. A. & Ulfbeck, D. A new digestion and chemical separation technique for rapid and highly reproducible determination of Lu/Hf and Hf isotope ratios in geological materials by MC-ICP-MS. Geostand. Newsl. 27, 133–145 (2003).

    Article  CAS  Google Scholar 

  20. Connelly, J. N., Ulfbeck, D. G., Thrane, K., Bizzarro, M. & Housh, T. A method for purifying Lu and Hf for analysis by MC-ICP-MS using TODGA resin. Chem. Geol. 233, 126–136 (2006).

    Article  ADS  CAS  Google Scholar 

  21. Kemp, A. I. S. et al. Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 45–56 (2010).

    Article  ADS  CAS  Google Scholar 

  22. McSween, H. Y., Taylor, J. & Wyatt, M. B. Elemental composition of the Martian crust. Science 324, 736–739 (2009).

    Article  ADS  PubMed  CAS  Google Scholar 

  23. Rudnick, R. L. & Gao, S. in The Crust (ed. Rudnick, R. L.) Treatise on Geochemistry Vol. 3, 1–64 (Elsevier, Amsterdam, 2003).

  24. Sautter, V. et al. In situ evidence for continental crust on early Mars. Nat. Geosci. 8, 605–609 (2015).

    Article  ADS  CAS  Google Scholar 

  25. Goossens, S. et al. Evidence for a low bulk crustal density for Mars from gravity and topography. Geophys. Res. Lett. 44, 7686–7694 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Condie, K. C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol. 104, 1–37 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Johansen, A., Mac Low, M. M., Lacerda, P. & Bizzarro, M. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1, e1500109 (2015).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bollard, J. et al. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv. 3, e1700407 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mezger, K., Debaille, V. & Kleine, T. Core formation and mantle differentiation on Mars. Space Sci. Rev. 174, 27–48 (2013).

    Article  ADS  CAS  Google Scholar 

  30. Söderlund, U., Patchett, P. J., Vervoort, J. D. & Isachsen, C. E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 219, 311–324 (2004).

    Article  ADS  CAS  Google Scholar 

  31. Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  32. Mattinson, J. M. et al. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66 (2005).

    Article  ADS  CAS  Google Scholar 

  33. Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).

    Article  ADS  CAS  Google Scholar 

  34. Krogh, T. E. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination. Geochim. Cosmochim. Acta 37, 485–494 (1973).

    Article  ADS  CAS  Google Scholar 

  35. Corfu, F. U–Pb age, setting and tectonic significance of the anorthosite–mangerite–charnockite–granite suite, Lofoten-Vesterålen, Norway. J. Petrol. 56, 2081–2097 (2004).

    Google Scholar 

  36. Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).

    Article  ADS  CAS  Google Scholar 

  37. Bellucci, J. J. et al. Pb-isotopic evidence for an early, enriched crust on Mars. Earth Planet. Sci. Lett. 410, 34–41 (2015).

    Article  ADS  CAS  Google Scholar 

  38. Steiger, R. H. & Jager, E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362 (1977).

    Article  ADS  CAS  Google Scholar 

  39. Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific of 235U and 238U. Phys. Rev. C 4, 1889–1906 (1971).

    Article  ADS  Google Scholar 

  40. Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508–2518 (2011).

    Article  CAS  Google Scholar 

  41. Wiedenbeck, M. et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl. 19, 1–23 (1995).

    Article  CAS  Google Scholar 

  42. Blichert-Toft, J. Hf isotopic composition of zircon reference material 91500. Chem. Geol. 253, 252–257 (2008).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this project was provided by the Danish National Research Foundation (DNRF97) and the European Research Council (ERC Consolidator Grant Agreement 616027, STARDUST2ASTEROIDS) to M.B. We thank J. Frydenvang and K. Kinch for discussions.

Reviewer information

Nature thanks A. Brandon and L. Elkins-Tanton for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

M.B. designed and led the research project. M.M.C. and J.N.C. identified and separated the zircons and performed analytical work related to the U–Pb isotope systematics of the zircons. L.C.B., J.N.C. and M.B. performed analytical work related to the 176Lu–176Hf systematics of the zircons. N.K.J., D.W., M.S., M.J.W., J.F.S., J.J.B., A.A.N., F.M., A.A. and B.G. assisted in sample preparation and zircon identification. All authors participated in the interpretation of the data. The manuscript was written by L.C.B., M.M.C., J.N.C. and M.B.

Corresponding author

Correspondence to Martin Bizzarro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Photomicrographs of the NWA 7034 zircons analysed in this study taken under natural light.

Given the small size and limited number of zircons recovered from the crushing process, we considered it to be preferable not to conduct additional imaging (using cathodoluminescence) because this necessitates extra manipulation of the individual grains, thereby increasing the risk of losing zircons. The fact that the zircons have mostly concordant U–Pb ages confirms their simple igneous history and, therefore, additional imaging to investigate potential zoning is not required here.

Supplementary information

Supplementary Table 1

U-Pb isotope data for NWA 7034 zircons.

Source Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouvier, L.C., Costa, M.M., Connelly, J.N. et al. Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 558, 586–589 (2018). https://doi.org/10.1038/s41586-018-0222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0222-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing