Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prognostic and therapeutic potential of senescent stromal fibroblasts in prostate cancer

Abstract

The stromal component of the tumour microenvironment in primary and metastatic prostate cancer can influence and promote disease progression. Within the prostatic stroma, fibroblasts are one of the most prevalent cell types associated with precancerous and cancerous lesions; they have a vital role in the structural composition, organization and integrity of the extracellular matrix. Fibroblasts within the tumour microenvironment can undergo cellular senescence, which is a stable arrest of cell growth and a phenomenon that is emerging as a recognized hallmark of cancer. Supporting the idea that cellular senescence has a pro-tumorigenic role, a subset of senescent cells exhibits a senescence-associated secretory phenotype (SASP), which, along with increased inflammation, can promote prostate cancer cell growth and survival. These cellular characteristics make targeting senescent cells and/or modulating SASP attractive as a potential preventive or therapeutic option for prostate cancer.

Key points

  • Cellular senescence is a stable arrest of cell growth and is emerging as a recognized hallmark of cancer.

  • Senescent fibroblasts in the prostatic stroma can exhibit a senescence-associated secretory phenotype (SASP) in the tumour microenvironment, which can contribute to increased local inflammation, thereby promoting prostate cancer development, progression and resistance to therapy.

  • To eliminate the ability of senescent cells to produce factors that promote cancer cell growth and survival, specifically targeting the senescent cells with senotherapeutics would be an attractive option in prostate cancer treatment.

  • The preventive or therapeutic potential of using senotherapeutics could most benefit those disproportionately affected by prostate cancer (such as Black men and men with considerable comorbidities) or men with prostate cancer who are at high risk of disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual illustration of factors influencing the accumulation of senescent cells and SASP.
Fig. 2: Conceptual illustration of a feedback loop involving prostate cancer cells, inflammation and cellular senescence.
Fig. 3: Conceptual illustration of the potential benefits of targeting senescent stromal fibroblasts and SASP in prostate cancer.
Fig. 4: Potential therapeutic targets for senescent stromal fibroblasts and SASP in the prostate cancer TME.

Similar content being viewed by others

References

  1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    Article  PubMed  Google Scholar 

  3. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  4. National Cancer Institute. Prostate: recent trends in U.S. age-adjusted mortality rates, 2000–2019(a). SEER https://seer.cancer.gov/statistics-network/explorer/application.html?site=66&data_type=2&graph_type=2&compareBy=age_range&chk_age_range_1=1&chk_age_range_160=160&chk_age_range_166=166&hdn_sex=2&race=1&advopt_precision=1&advopt_show_ci=on&hdn_view=0&advopt_show_apc=on&advopt_display=2 (2020).

  5. Siegel, D. A., O’Neil, M. E., Richards, T. B., Dowling, N. F. & Weir, H. K. Prostate cancer incidence and survival, by stage and race/ethnicity — United States, 2001–2017. Morb. Mortal. Wkly Rep. 69, 1473–1480 (2020).

    Article  Google Scholar 

  6. Mori, J. O. et al. Novel forms of prostate cancer chemoresistance to successful androgen deprivation therapy demand new approaches: rationale for targeting BET proteins. Prostate 82, 1005–1015 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Mori, J. O. et al. Molecular and pathological subtypes related to prostate cancer disparities and disease outcomes in African American and European American patients. Front. Oncol. 12, 928357 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cancer tomorrow. World Health Organization https://gco.iarc.fr/tomorrow (2021).

  9. Coppé, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  10. Fiard, G. et al. Cellular senescence as a possible link between prostate diseases of the ageing male. Nat. Rev. Urol. 18, 597–610 (2021). Overview linking benign prostate hyperplasia and prostate cancer to senescent cells found in the ageing prostate.

    Article  PubMed  Google Scholar 

  11. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  12. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Artandi, S. E. & DePinho, R. A. A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr. Opin. Genet. Dev. 10, 39–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Huang, W., Hickson, L. T. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  16. Jun, J. I. L. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12, 676–685 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Birch, J. & Gil, J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 34, 1565–1576 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Myrianthopoulos, V. et al. Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol. Ther. 193, 31–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Coppé, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008). These findings outline features of genotoxic stress-induced senescence and suggest cell-nonautonomous mechanisms for the development of cancer by altering the tissue microenvironment.

    Article  PubMed  Google Scholar 

  20. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bavik, C. et al. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 66, 794–802 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Begley, L., Monteleon, C., Shah, R. B., Macdonald, J. W. & Macoska, J. A. CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell 4, 291–298 (2005). In vitro studies with stromal fibroblastic cells isolated from patients demonstrate that the ageing prostatic stroma enhances prostate epithelial cell proliferation in a paracrine manner through the CXCL12–CXCR4 signalling axis.

    Article  CAS  PubMed  Google Scholar 

  23. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Waaijer, M. E. C. et al. The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell 11, 722–725 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Tuttle, C. S. L. et al. Cellular senescence and chronological age in various human tissues: a systematic review and meta-analysis. Aging Cell 19, e13083 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018). This work describes senescence-phenotype molecular regulators and how the regulators could be used to identify senescent cells in vitro and in vivo.

    Article  CAS  PubMed  Google Scholar 

  27. Basisty, N. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599 (2020). This describes a proteomics database of senescence inducers and molecules secreted by senescent cells of different cell types.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Sikora, E., Bielak-Zmijewska, A. & Mosieniak, G. What is and what is not cell senescence. Adv. Biochem. 64, 110–118 (2018).

    Google Scholar 

  29. da Silva, P. F. L. et al. The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell 18, e12848 (2019). Mouse dermal fibroblasts and myofibres in the vicinity of senescent cell xenotransplants displayed an increased senescence phenotype compared with non-senescent cell xenotransplants.

    Article  PubMed  Google Scholar 

  30. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Lau, L. & David, G. Pro- and anti-tumorigenic functions of the senescence-associated secretory phenotype. Expert Opin. Ther. Targets 23, 1041–1051 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Matjusaitis, M., Chin, G., Sarnoski, E. A. & Stolzing, A. Biomarkers to identify and isolate senescent cells. Ageing Res. Rev. 29, 1–12 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Kudlova, N., De Sanctis, J. B. & Hajduch, M. Cellular senescence: molecular targets, biomarkers, and senolytic drugs. Int. J. Mol. Sci. 23, 4168 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Vermeulen, K., Van Bockstaele, D. R. & Berneman, Z. N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131–149 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Beauséjour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kotake, Y., Yaxue, Z. & Xiong, Y. DDB1-CUL4 and MLL1 mediate oncogene-induced p16INK4a activation. Cancer Res. 69, 1809–1814 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  38. Stein, G. H., Drullinger, L. F., Soulard, A. & Dulić, V. Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol. Cell. Biol. 19, 2109–2117 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Herbig, U., Wei, W., Dutriaux, A., Jobling, W. A. & Sedivy, J. M. Real-time imaging of transcriptional activation in live cells reveals rapid up-regulation of the cyclin-dependent kinase inhibitor gene CDKN1A in replicative cellular senescence. Aging Cell 2, 295–304 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Wei, W., Hemmer, R. M. & Sedivy, J. M. Role of p14 ARF in replicative and induced senescence of human fibroblasts. Mol. Cell Biol. 21, 6748–6757 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Engeland, K. Cell cycle regulation: p53–p21–RB signaling. Cell Death Differ. 29, 946–960 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Cayo, A. et al. mTOR activity and autophagy in senescent cells, a complex partnership. Int. J. Mol. Sci. 22, 8149 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Young, A. R. J. et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 23, 798–803 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Merchut-Maya, J. M. & Maya-Mendoza, A. The contribution of lysosomes to DNA replication. Cells 10, 1068 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. D’Adda Di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  PubMed  Google Scholar 

  47. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Ramirez, R. D. et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev. 15, 398–403 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Levesque, C. & Nelson, P. S. Cellular constituents of the prostate stroma: key contributors to prostate cancer progression and therapy resistance. Cold Spring Harb. Perspect. Med. 8, a030510 (2018). Overview highlighting how the reactive stroma changes in composition as a cause or consequence of intrinsic and extrinsic factors coevolves with prostate cancer progression.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Brennen, W. N., Denmeade, S. R. & Isaacs, J. T. Mesenchymal stem cells as a vector for the inflammatory prostate microenvironment. Endocr. Relat. Cancer 20, R269–R290 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Brennen, W. N., Kisteman, L. N. & Isaacs, J. T. Rapid selection of mesenchymal stem and progenitor cells in primary prostate stromal cultures. Prostate 76, 552–564 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  53. Brennen, W. N. et al. Mesenchymal stem cell infiltration during neoplastic transformation of the human prostate. Oncotarget 8, 46710–46727 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  54. Brennen, W. N. & Isaacs, J. T. Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nat. Rev. Urol. 15, 703–715 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Sanches, B. D. A. et al. Stromal cell interplay in prostate development, physiology, and pathological conditions. Prostate 81, 926–937 (2021).

    Article  PubMed  Google Scholar 

  56. Henry, G. H. et al. A cellular anatomy of the normal adult human prostate and prostatic urethra. Cell Rep. 25, 3530–3542.e5 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Tuxhorn, J. A. et al. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin. Cancer Res. 8, 2912–2923 (2002).

    CAS  PubMed  Google Scholar 

  58. Rimal, R. et al. Cancer-associated fibroblasts: origin, function, imaging, and therapeutic targeting. Adv. Drug Deliv. Rev. 189, 114504 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Bedeschi, M., Marino, N., Cavassi, E., Piccinini, F. & Tesei, A. Cancer-associated fibroblast: role in prostate cancer progression to metastatic disease and therapeutic resistance. Cells 12, 802 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Owen, J. S., Clayton, A. & Pearson, H. B. Cancer-associated fibroblast heterogeneity, activation and function: implications for prostate cancer. Biomolecules 13, 67 (2023).

    Article  CAS  Google Scholar 

  61. Barron, D. A. & Rowley, D. R. The reactive stroma microenvironment and prostate cancer progression. Endocr. Relat. Cancer 19, R187 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Fibroblast. National Human Genomic Research Institute https://www.genome.gov/genetics-glossary/Fibroblast (2023).

  63. Wei, K., Nguyen, H. N. & Brenner, M. B. Fibroblast pathology in inflammatory diseases. J. Clin. Invest. 131, e149538 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Boesch, M. et al. Fibroblasts in cancer: defining target structures for therapeutic intervention. Biochim. Biophys. Acta Rev. Cancer 1872, 111–121 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Lynch, M. D. & Watt, F. M. Fibroblast heterogeneity: implications for human disease. J. Clin. Investig. 128, 26–35 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  66. Plikus, M. V. et al. Fibroblasts: origins, definitions, and functions in health and disease. Cell 184, 3852–3872 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Koliaraki, V., Prados, A., Armaka, M. & Kollias, G. The mesenchymal context in inflammation, immunity and cancer. Nat. Immunol. 21, 974–982 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Gelse, K., Pöschl, E. & Aigner, T. Collagens — structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55, 1531–1546 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Shiao, S. L., Chu, G. C. Y. & Chung, L. W. K. Regulation of prostate cancer progression by the tumor microenvironment. Cancer Lett. 380, 340–348 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Kang, J. et al. Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett. 530, 156–169 (2022). The primary tumour microenvironment and the premetastatic niche promote prostate cancer metastasis and therapy resistance.

    Article  CAS  PubMed  Google Scholar 

  72. Brennen, W. N., Isaacs, J. T. & Denmeade, S. R. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther. 11, 257–266 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Sasaki, T., Franco, O. E. & Hayward, S. W. Interaction of prostate carcinoma-associated fibroblasts with human epithelial cell lines in vivo. Differentiation 96, 40–48 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Brennen, W. N. et al. Overcoming stromal barriers to immuno-oncological responses via fibroblast activation protein-targeted therapy. Immunotherapy 13, 155–175 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Puré, E. & Blomberg, R. Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene 37, 4343–4357 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  76. Erdogan, B. et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J. Cell Biol. 216, 3799–3816 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. ChallaSivaKanaka, S., Vickman, R. E., Kakarla, M., Hayward, S. W. & Franco, O. E. Fibroblast heterogeneity in prostate carcinogenesis. Cancer Lett. 525, 76–83 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Liao, Z., Tan, Z. W., Zhu, P. & Tan, N. S. Cancer-associated fibroblasts in tumor microenvironment — accomplices in tumor malignancy. Cell Immunol. 343, 103729 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Hu, B. & Phan, S. H. Myofibroblasts. Curr. Opin. Rheumatol. 25, 71–77 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  80. Tai, Y. et al. Myofibroblasts: function, formation, and scope of molecular therapies for skin fibrosis. Biomolecules 11, 1095 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Chowdhury, R. et al. Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget 6, 715–731 (2015).

    Article  PubMed  Google Scholar 

  82. Hintz, H. M., Cowan, A. E., Shapovalova, M. & LeBeau, A. M. Development of a cross-reactive monoclonal antibody for detecting the tumor stroma. Bioconjug. Chem. 30, 1466–1476 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Hayward, S. W. Immunotherapeutic response in tumors is affected by microenvironmental ROS. Cancer Res. 80, 1799–1800 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Krueger, T. E., Thorek, D. L. J., Meeker, A. K., Isaacs, J. T. & Brennen, W. N. Tumor-infiltrating mesenchymal stem cells: drivers of the immunosuppressive tumor microenvironment in prostate cancer? Prostate 79, 320–330 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Andersen, M. K. et al. Integrative metabolic and transcriptomic profiling of prostate cancer tissue containing reactive stroma. Sci. Rep. 8, 14269 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  86. Tuxhorn, J. A., McAlhany, S. J., Dang, T. D., Ayala, G. E. & Rowley, D. R. Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res. 62, 3298–3307 (2002).

    CAS  PubMed  Google Scholar 

  87. Tuxhorn, J. A., Ayala, G. E. & Rowley, D. R. Reactive stroma in prostate cancer progression. J. Urol. 166, 2472–2483 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Brennen, W. N. et al. Assessing angiogenic responses induced by primary human prostate stromal cells in a three-dimensional fibrin matrix assay. Oncotarget 7, 71298–71308 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  89. Kfoury, Y. & Scadden, D. T. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 16, 239–253 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Ridge, S. M., Sullivan, F. J. & Glynn, S. A. Mesenchymal stem cells: key players in cancer progression. Mol. Cancer 16, 31 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  91. Lee, C. H., Moioli, E. K. & Mao, J. J. in Ann. Int. Conf. IEEE Engineering in Medicine and Biology Proc. Vol. 1, 775–778 (NIH Public Access, 2006).

  92. Rahimi Tesiye, M., Abrishami Kia, Z. & Rajabi-Maham, H. Mesenchymal stem cells and prostate cancer: a concise review of therapeutic potentials and biological aspects. Stem Cell Res. 63, 102864 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Fu, X. et al. Mesenchymal stem cell migration and tissue repair. Cells 8, 784 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Pittenger, M. F. et al. Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regen. Med. 4, 22 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  95. Lama, V. N. et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J. Clin. Invest. 117, 989–996 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Hass, R., Kasper, C., Böhm, S. & Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal. 9, 12 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Prasanna, P. G. et al. Therapy-induced senescence: opportunities to improve anticancer therapy. J. Natl Cancer Inst. 113, 1285–1298 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  98. Clark, K. C., Wu, Y., Taylor, R. A. & Daly, R. J. Novel therapeutic targets and biomarkers associated with prostate cancer-associated fibroblasts (CAFs). Crit. Rev. Oncog. 27, 1–24 (2022).

    Article  PubMed  Google Scholar 

  99. Bonollo, F., Thalmann, G. N., de Julio, M. K. & Karkampouna, S. The role of cancer-associated fibroblasts in prostate cancer tumorigenesis. Cancers 12, 1887 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Karin, O. & Alon, U. Senescent cell accumulation mechanisms inferred from parabiosis. GeroScience 43, 329–341 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Karin, O., Agrawal, A., Porat, Z., Krizhanovsky, V. & Alon, U. Senescent cell turnover slows with age providing an explanation for the Gompertz law. Nat. Commun. 10, 5495 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3, 708 (2012).

    Article  PubMed  Google Scholar 

  103. Shin, J.-S., Hong, A., Solomon, M. J. & Lee, C. S. The role of telomeres and telomerase in the pathology of human cancer and aging. Pathology 38, 103–113 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Deng, Y. & Chang, S. Role of telomeres and telomerase in genomic instability, senescence and cancer. Lab. Investig. 87, 1071–1076 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Crabbe, L., Jauch, A., Naeger, C. M., Holtgreve-Grez, H. & Karlseder, J. Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc. Natl Acad. Sci. USA 104, 2205–2210 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355, 1330–1334 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Chandeck, C. & Mooi, W. J. Oncogene-induced cellular senescence. Adv. Anat. Pathol. 17, 42–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Rattanavirotkul, N., Kirschner, K. & Chandra, T. Induction and transmission of oncogene-induced senescence. Cell. Mol. Life Sci. 78, 843–852 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Zhu, H. et al. Oncogene-induced senescence: from biology to therapy. Mech. Ageing Dev. 187, 111229 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Eng, C., Leone, G., Orloff, M. S. & Ostrowski, M. C. Genomic alterations in tumor stroma. Cancer Res. 69, 6759–6764 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Lisanti, M. P., Martinez-Outschoorn, U. E. & Sotgia, F. Oncogenes induce the cancer-associated fibroblast phenotype: metabolic symbiosis and “fibroblast addiction” are new therapeutic targets for drug discovery. Cell Cycle 12, 2723 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Chen, M. S., Lee, R. T. & Garbern, J. C. Senescence mechanisms and targets in the heart. Cardiovasc. Res. 118, 1173–1187 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Petrova, V., Annicchiarico-Petruzzelli, M., Melino, G. & Amelio, I. The hypoxic tumour microenvironment. Oncogenesis 7, 538–544 (2018).

    Article  Google Scholar 

  114. Welford, S. M. & Giaccia, A. J. Hypoxia and senescence: the impact of oxygenation on tumor suppression. Mol. Cancer Res. 9, 538–544 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Usugi, E. et al. Antifibrotic agent pirfenidone suppresses proliferation of human pancreatic cancer cells by inducing G0/G1 cell cycle arrest. Pharmacology 103, 250–256 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Magi-Galluzzi, C., Sanderson, H. & Epstein, J. I. Atypia in nonneoplastic prostate glands after radiotherapy for prostate cancer: duration of atypia and relation to type of radiotherapy. Am. J. Surg. Pathol. 27, 206–212 (2003).

    Article  PubMed  Google Scholar 

  117. Sun, Y. et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat. Med. 18, 1359–1368 (2012). A genome-wide analysis of transcriptional responses to genotoxic stress shows that genotoxic cancer therapeutics induced transcriptional changes in the tumour microenvironment that promoted resistance to prostate cancer treatment.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Kim, J. H., Brown, S. L. & Gordon, M. N. Radiation-induced senescence: therapeutic opportunities. Radiat. Oncol. 18, 10 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  119. Roediger, J. et al. Supraphysiological androgen levels induce cellular senescence in human prostate cancer cells through the Src-Akt pathway. Mol. Cancer 13, 214 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  120. Hessenkemper, W. et al. A natural androgen receptor antagonist induces cellular senescence in prostate cancer cells. Mol. Endocrinol. 28, 1831–1840 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  121. Roell, D. et al. Halogen-substituted anthranilic acid derivatives provide a novel chemical platform for androgen receptor antagonists. J. Steroid Biochem. Mol. Biol. 188, 59–70 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Fousteris, M. A. et al. 20-Aminosteroids as a novel class of selective and complete androgen receptor antagonists and inhibitors of prostate cancer cell growth. Bioorg. Med. Chem. 18, 6960–6969 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Mirochnik, Y. et al. Androgen receptor drives cellular senescence. PLoS ONE 7, e31052 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Pungsrinont, T. et al. Senolytic compounds control a distinct fate of androgen receptor agonist- and antagonist-induced cellular senescent LNCaP prostate cancer cells. Cell Biosci. 10, 59 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Palethorpe, H. M., Leach, D. A., Need, E. F., Drew, P. A. & Smith, E. Myofibroblast androgen receptor expression determines cell survival in co-cultures of myofibroblasts and prostate cancer cells in vitro. Oncotarget 9, 19100–19114 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  126. Henshall, S. M. et al. Altered expression of androgen receptor in the malignant epithelium and adjacent stroma is associated with early relapse in prostate cancer. Cancer Res. 61, 423–427 (2001).

    CAS  PubMed  Google Scholar 

  127. Cunha, G. R. et al. Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. J. Steroid Biochem. Mol. Biol. 92, 221–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. The Human Protein Atlas single cell type — prostate. The Human Protein Atlas https://www.proteinatlas.org/ENSG00000169083-AR/single+cell+type/prostate (2023).

  129. Human normal and BPH prostate. Strand Lab https://strandlab.net/sc.data/pdpgb/ (2023).

  130. Yue, Z. et al. Senescence-associated secretory phenotype and its impact on oral immune homeostasis. Front. Immunol. 13, 1019313 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Waters, D. W. et al. A senescence bystander effect in human lung fibroblasts. Biomedicines 9, 1162 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Nelson, G., Kucheryavenko, O., Wordsworth, J. & von Zglinicki, T. The senescent bystander effect is caused by ROS-activated NF-κB signalling. Mech. Ageing Dev. 170, 30–36 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Mikuła-Pietrasik, J. et al. Bystander senescence in human peritoneal mesothelium and fibroblasts is related to thrombospondin-1-dependent activation of transforming growth factor-β1. Int. J. Biochem. Cell Biol. 45, 2087–2096 (2013).

    Article  PubMed  Google Scholar 

  134. Nelson, G. et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11, 345–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Aw, D., Silva, A. B. & Palmer, D. B. Immunosenescence: emerging challenges for an ageing population. Immunology 120, 435–446 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Göbel, A. et al. The role of inflammation in breast and prostate cancer metastasis to bone. Int. J. Mol. Sci. 22, 5078 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  138. Tewari, A. K., Stockert, J. A., Yadav, S. S., Yadav, K. K. & Khan, I. Inflammation and prostate cancer. Adv. Exp. Med. Biol. 1095, 41–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Puhr, M. et al. Inflammation, microbiota, and prostate cancer. Eur. Urol. Focus 2, 374–382 (2016).

    Article  PubMed  Google Scholar 

  140. Sfanos, K. S., Yegnasubramanian, S., Nelson, W. G. & De Marzo, A. M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 15, 11–24 (2018).

    Article  PubMed  Google Scholar 

  141. Stark, T., Livas, L. & Kyprianou, N. Inflammation in prostate cancer progression and therapeutic targeting. Transl. Androl. Urol. 4, 455–463 (2015).

    PubMed Central  PubMed  Google Scholar 

  142. Rani, A., Dasgupta, P. & Murphy, J. J. Prostate cancer: the role of inflammation and chemokines. Am. J. Pathol. 189, 2119–2137 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Kohli, K., Pillarisetty, V. G. & Kim, T. S. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. 29, 10–21 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Kay, J., Thadhani, E., Samson, L. & Engelward, B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair 83, 102673 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Papaconstantinou, J. The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease. Cells 8, 1383 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Begley, L. A., Kasina, S., MacDonald, J. & Macoska, J. A. The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy. Cytokine 43, 194–199 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Prata, L. G. P. L., Ovsyannikova, I. G., Tchkonia, T. & Kirkland, J. L. Senescent cell clearance by the immune system: emerging therapeutic opportunities. Semin. Immunol. 40, 101275 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Chen, S. et al. Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression. Nat. Cell Biol. 23, 87–98 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Zhang, W. et al. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell 184, 2471–2486.e20 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. De Vivar, A. D. et al. Histologic features of stromogenic carcinoma of the prostate (carcinomas with reactive stroma grade 3). Hum. Pathol. 63, 202–211 (2017).

    Article  PubMed  Google Scholar 

  151. Turner, C. J. & Edwards, C. M. The role of the microenvironment in prostate cancer-associated bone disease. Curr. Osteoporos. Rep. 14, 170–177 (2016).

    Article  PubMed  Google Scholar 

  152. Gravina, G. L. et al. Phenotypic characterization of human prostatic stromal cells in primary cultures derived from human tissue samples. Int. J. Oncol. 42, 2116–2122 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Savant, S. S., Sriramkumar, S. & O’hagan, H. M. The role of inflammation and inflammatory mediators in the development, progression, metastasis, and chemoresistance of epithelial ovarian cancer. Cancers 10, 251 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  154. Nguyen, D. P., Li, J. & Tewari, A. K. Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int. 113, 986–992 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Culig, Z. Interleukin-6 function and targeting in prostate cancer. Adv. Exp. Med. Biol. 1290, 1–8 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Culig, Z. & Puhr, M. Interleukin-6 and prostate cancer: current developments and unsolved questions. Mol. Cell. Endocrinol. 462, 25–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Xu, H., Ding, Q. & Jiang, H. W. Genetic polymorphism of interleukin-1A (IL-1A), IL-1B, and IL-1 receptor antagonist (IL-1RN) and prostate cancer risk. Asian Pacif. J. Cancer Prev. 15, 8741–8747 (2014).

    Article  Google Scholar 

  158. Graham, M. K. & Meeker, A. Telomeres and telomerase in prostate cancer development and therapy. Nat. Rev. Urol. 14, 607–619 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Heaphy, C. M. et al. Prostate stromal cell telomere shortening is associated with risk of prostate cancer in the placebo arm of the Prostate Cancer Prevention Trial. Prostate 75, 1160–1166 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  160. Heaphy, C. M. et al. The prostate tissue-based telomere biomarker as a prognostic tool for metastasis and death from prostate cancer after prostatectomy. J. Pathol. Clin. Res. 8, 481–491 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Heaphy, C. M. et al. Prostate cancer cell telomere length variability and stromal cell telomere length as prognostic markers for metastasis and death. Cancer Discov. 3, 1130–1141 (2013). Stromal cell telomere shortening, one of the many markers of senescence, in combination with variable telomere lengths in prostate cancer cells, is a predictor of increased risk of death in men with prostate cancer.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. De Leo, F. et al. Diflunisal targets the HMGB 1/ CXCL 12 heterocomplex and blocks immune cell recruitment. EMBO Rep. 20, e47788 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  163. Li, X. et al. CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC. Exp. Cell Res. 378, 131–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Liekens, S., Schols, D. & Hatse, S. CXCL12–CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr. Pharm. Des. 16, 3903–3920 (2011).

    Article  Google Scholar 

  165. Susek, K. H., Karvouni, M., Alici, E. & Lundqvist, A. The role of CXC chemokine receptors 1–4 on immune cells in the tumor microenvironment. Front. Immunol. 9, 2159 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  166. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Gonzalez, H., Hagerling, C. & Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes. Dev. 32, 1267–1284 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Wang, I. et al. Prostate cancer immunotherapy: a review of recent advancements with novel treatment methods and efficacy. Am. J. Clin. Exp. Urol. 10, 210–233 (2022).

    PubMed Central  PubMed  Google Scholar 

  170. Liu, Y. T. & Sun, Z. J. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics 11, 5265–5286 (2021).

    Article  Google Scholar 

  171. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug. Discov. 18, 197–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Nair, S. S., Weil, R., Dovey, Z., Davis, A. & Tewari, A. K. The tumor microenvironment and immunotherapy in prostate and bladder cancer. Urol. Clin. North Am. 47, e17–e54 (2020).

    Article  PubMed  Google Scholar 

  173. Peng, S. et al. Single-cell analysis reveals EP4 as a target for restoring T-cell infiltration and sensitizing prostate cancer to immunotherapy. Clin. Cancer Res. 28, 552–567 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Wallace, T. A. et al. Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res. 68, 927–936 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Tang, W. et al. IFNL4-ΔG allele is associated with an interferon signature in tumors and survival of African-American men with prostate cancer. Clin. Cancer Res. 24, 5471–5481 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Rayford, W. et al. Comparative analysis of 1152 African-American and European-American men with prostate cancer identifies distinct genomic and immunological differences. Commun. Biol. 4, 670 (2021). A retrospective analysis of patients with suspected prostate cancer who underwent radical prostatectomy shows that African American men have an enriched immune signature compared with European American men.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Kiely, M. & Ambs, S. Immune inflammation pathways as therapeutic targets to reduce lethal prostate cancer in African American men. Cancers 13, 2874 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Awasthi, S. et al. Comparative genomics reveals distinct immune-oncologic pathways in African American men with prostate cancer. Clin. Cancer Res. 27, 320–329 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Batai, K., Murphy, A. B., Nonn, L. & Kittles, R. A. Vitamin D and immune response: implications for prostate cancer in African Americans. Front. Immunol. 7, 53 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  180. Gillard, M. et al. Elevation of stromal-derived mediators of inflammation promote prostate cancer progression in African-American men. Cancer Res. 78, 6134–6145 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Smith, C. J. et al. Aspirin use reduces the risk of aggressive prostate cancer and disease recurrence in African-American men. Cancer Epidemiol. Biomark. Prev. 26, 845–853 (2017).

    Article  CAS  Google Scholar 

  182. Sartor, O. et al. Survival of African-American and Caucasian men after sipuleucel-T immunotherapy: outcomes from the PROCEED registry. Prostate Cancer Prostatic Dis. 23, 517–526 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. eBioMedicine 21, 21–28 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  184. Scudellari, M. To stay young, kill zombies. Nature 550, 448–450 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556–1568 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  186. Raffaele, M. & Vinciguerra, M. The costs and benefits of senotherapeutics for human health. Lancet Healthy Longev. 3, e67–e77 (2022).

    Article  PubMed  Google Scholar 

  187. Kim, E. C. & Kim, J. R. Senotherapeutics: emerging strategy for healthy aging and age-related disease. BMB Rep. 52, 47–55 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  188. Choi, J. Y., Yee, S. F., Tchangalova, T., Yang, G. & Fisher, J. P. Recent advances in senotherapeutics delivery. Tissue Eng. B 28, 1223–1234 (2022).

    Article  Google Scholar 

  189. Zhang, L., Pitcher, L. E., Prahalad, V., Niedernhofer, L. J. & Robbins, P. D. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J. 290, 1362–1383 (2023).

    Article  CAS  PubMed  Google Scholar 

  190. Sánchez-Díaz, L., Espinosa-Sánchez, A., Blanco, J. R. & Carnero, A. Senotherapeutics in cancer and HIV. Cells 11, 1222 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  191. Schwarze, S. R., Fu, V. X., Desotelle, J. A., Kenowski, M. L. & Jarrard, D. F. The identification of senescence-specific genes during the induction of senescence in prostate cancer cells. Neoplasia 7, 816–823 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  192. Macoska, J. A. et al. Pilot and feasibility study of serum chemokines as markers to distinguish prostatic disease in men with low total serum PSA. Prostate 68, 442–452 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Jochems, F. et al. The Cancer SENESCopedia: a delineation of cancer cell senescence. Cell Rep. 36, 109441 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  194. Begley, L. A., MacDonald, J. W., Day, M. L. & Macoska, J. A. CXCL12 activates a robust transcriptional response in human prostate epithelial cells. J. Biol. Chem. 282, 26767–26774 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Mylonas, K. J. et al. Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci. Transl. Med. 13, eabb0203 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Raffaele, M. et al. Mild exacerbation of obesity- and age-dependent liver disease progression by senolytic cocktail dasatinib+quercetin. Cell Commun. Signal. 19, 44 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  197. Peng, X. et al. Cellular senescence contributes to radiation-induced hyposalivation by affecting the stem/progenitor cell niche. Cell Death Dis. 11, 854 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  198. Alessio, N. et al. Biomolecular evaluation of piceatannol’s effects in counteracting the senescence of mesenchymal stromal cells: a new candidate for senotherapeutics? Int. J. Mol. Sci. 22, 11619 (2021). An in vitro evaluation of piceatannol demonstrates its selective senotherapeutic potential against senescent mesenchymal stromal cells.

    Article  PubMed Central  PubMed  Google Scholar 

  199. Lewinska, A. et al. AMPK-mediated senolytic and senostatic activity of quercetin surface functionalized Fe3O4 nanoparticles during oxidant-induced senescence in human fibroblasts. Redox Biol. 28, 101337 (2020). Natural compounds and repurposed drugs with senolytics and senomorphic activities.

    Article  CAS  PubMed  Google Scholar 

  200. Palacio, L. et al. Restored immune cell functions upon clearance of senescence in the irradiated splenic environment. Aging Cell 18, e12971 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  201. Garrido, A. M. et al. Efficacy and limitations of senolysis in atherosclerosis. Cardiovasc. Res. 118, 1713–1727 (2022).

    Article  CAS  PubMed  Google Scholar 

  202. Owens, W. A., Walaszczyk, A., Spyridopoulos, I., Dookun, E. & Richardson, G. D. Senescence and senolytics in cardiovascular disease: promise and potential pitfalls. Mech. Ageing Dev. 198, 111540 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Boccardi, V. & Mecocci, P. Senotherapeutics: targeting senescent cells for the main age-related diseases. Mech. Ageing Dev. 197, 111526 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Carpenter, V. et al. Androgen-deprivation induced senescence in prostate cancer cells is permissive for the development of castration-resistance but susceptible to senolytic therapy. Biochem. Pharmacol. 193, 114765 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Malaquin, N. et al. DNA damage- but not enzalutamide-induced senescence in prostate cancer promotes senolytic Bcl-xL inhibitor sensitivity. Cells 9, 1593 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  206. Peng, Y. et al. Ginsenoside Rg3 inhibits the senescence of prostate stromal cells through down-regulation of interleukin 8 expression. Oncotarget 8, 64779–64792 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  207. El Maaty, M. A. A. et al. Single-cell analyses unravel cell type-specific responses to a vitamin D analog in prostatic precancerous lesions. Sci. Adv. 7, eabg5982 (2021).

    Article  CAS  PubMed  Google Scholar 

  208. Liu, H. et al. Rutin is a potent senomorphic agent to target senescent cells and can improve chemotherapeutic efficacy. Aging Cell https://doi.org/10.1111/acel.13921 (2023).

  209. Baghban, R. et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 18, 59 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  210. Wu, Y., Song, Y., Wang, R. & Wang, T. Molecular mechanisms of tumor resistance to radiotherapy. Mol. Cancer 22, 96 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  211. Ngoi, N. Y. et al. The redox–senescence axis and its therapeutic targeting. Redox Biol. 45, 102032 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  212. Lall, R. K., Adhami, V. M. & Mukhtar, H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol. Nutr. Food Res. 60, 1396–1405 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  213. Li, W., He, Y., Zhang, R., Zheng, G. & Zhou, D. The curcumin analog EF24 is a novel senolytic agent. Aging 11, 771–782 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  214. Kale, A. et al. Role of immune cells in the removal of deleterious senescent cells. Immun. Ageing 17, 16 (2020).

    Article  PubMed  Google Scholar 

  215. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Larionova, I. et al. Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers. Front. Oncol. 10, 566511 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  217. Boibessot, C. & Toren, P. Sex steroids in the tumor microenvironment and prostate cancer progression. Endocr. Relat. Cancer 25, R179–R196 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Ge, R., Wang, Z. & Cheng, L. Tumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistance. npj Precis. Oncol. 6, 31 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  219. Akoto, T. & Saini, S. Role of exosomes in prostate cancer metastasis. Int. J. Mol. Sci. 22, 3528 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Hofbauer, L. C. et al. Novel approaches to target the microenvironment of bone metastasis. Nat. Rev. Clin. Oncol. 18, 488–505 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

E.A.P. and A.K.M. received support for this research from the National Cancer Institute (R01CA255349) and the Department of Defense Prostate Cancer Research Program (W81XWH-20-1-0264). W.N.B. received support for the research of this work from the National Cancer Institute (R01CA255259). A.M.D.M. received support for the research of this work from the National Cancer Institute (U01CA196390). S.Y., A.M.D.M. and W.N.B. received support for the research of this work from the National Cancer Institute (U54CA274370). S.R.D. received support for the research of this work from the National Cancer Institute (P50CA058236). The content of this work is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

J.O.M., I.E. and C.M.H. researched data for the article. J.O.M., W.N.B., M.K.G., T.L.L., A.M.D.M., S.R.D., S.Y., W.G.N., G.V.D., E.A.P., A.K.M., C.C.Y. and C.M.H. contributed substantially to discussion of the content. J.O.M., I.E., W.N.B., M.K.G., E.A.P., A.K.M. and C.M.H. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Christopher M. Heaphy.

Ethics declarations

Competing interests

T.L.L. has received research support from Roche/Ventana, AIRA Matrix, DeepBio and Myriad Genetics for other studies. C.C.Y. received honorarium or consultant fees from PreludeDx, QED Therapeutics, Amgen, Regeneron and Riptide Bioscience. C.C.Y. is a shareholder in Riptide Bioscience. A.M.D.M. has served as a Consultant for Merck and Cepheid and has received research grant funding from Janssen R&D. S.R.D. has received research funding for his institution from Astellas and Bayer. S.Y. has received grant support to his institution from Janssen, Bristol Myers Squibb and Cepheid. He has also previously served as a consultant to Cepheid. W.G.N. is a member of the Scientific Advisory Board for Cepheid and has received funding support from Bristol Myers Squibb. G.V.D. is a member of the scientific advisory board of Vyne Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Yu Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, J.O., Elhussin, I., Brennen, W.N. et al. Prognostic and therapeutic potential of senescent stromal fibroblasts in prostate cancer. Nat Rev Urol (2023). https://doi.org/10.1038/s41585-023-00827-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-023-00827-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer