Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diagnostic liquid biopsy biomarkers in renal cell cancer

Abstract

The clinical presentation of renal cell cancer (RCC) is shifting towards incidental and early detection, creating new challenges in RCC diagnosis. Overtreatment might be reduced with the development of new diagnostic biomarkers to distinguish benign from malignant small renal masses (SRMs). Differently from tissue biopsies, liquid biopsies are obtained from a patient’s blood or urine and, therefore, are minimally invasive and suitable for longitudinal monitoring. The most promising types of liquid biopsy biomarkers for RCC diagnosis are circulating tumour cells, extracellular vesicles (EVs) and cell-free DNA. Circulating tumour cell assays have the highest specificity, with low processing time and costs. However, the biological characteristics and low sensitivity limit the use of these markers in SRM diagnostics. Cell-free DNA might complement the diagnosis of high-volume RCC, but the potential for clinical application in SRMs is limited. EVs have the highest biological abundance and the highest sensitivity in identifying low-volume disease; moreover, the molecular characteristics of these markers make EVs suitable for multiple analytical applications. Thus, currently, EV assays have the greatest potential for diagnostic application in RCC (including identification of SRMs). All these liquid biomarkers have potential in clinical practice, pending validation studies. Biomarker implementation will be needed to also improve characterization of RCC subtypes. Last, diagnostic biomarkers might be extended to prognostic or predictive applications.

Key points

  • The shift towards early renal cell cancer (RCC) diagnosis comes with a demand for novel biomarkers to face diagnostic challenges in the identification of small renal masses (SRMs) and characterization of RCC subtypes.

  • Liquid biopsy is less invasive than tumour biopsy, but, to date, no liquid biopsy biomarkers have been clinically approved for RCC diagnosis.

  • Circulating tumour cells (CTCs) seem less suitable than extracellular vesicles (EVs) for cancer detection in SRMs, owing to low epithelial cell adhesion molecule (EPCAM) expression in RCC and low biological abundance of CTCs in early stages of the disease.

  • Cell-free DNA seems to be more promising as a predictive biomarker of response to systemic metastatic RCC therapies than as a diagnostic biomarker owing to the low biological abundance of this marker in RCC, especially in SRMs.

  • EVs have the highest potential as diagnostic biomarkers in RCC, especially SRMs.

  • Further standardization and simplification are still required in all experimental RCC biomarker assays before liquid biopsy can be applied in clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Circulating tumour cells, cell-free DNA and extracellular vesicles enter the blood circulation.
Fig. 2: Parameters relevant for clinical implementation of renal cell carcinoma biomarkers in liquid biopsy samples.

Similar content being viewed by others

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Shuch, B. et al. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur. Urol. 67, 85–97 (2015).

    Article  PubMed  Google Scholar 

  3. Marconi, L. et al. Systematic review and meta-analysis of diagnostic accuracy of percutaneous renal tumour biopsy. Eur. Urol. 69, 660–673 (2016).

    Article  PubMed  Google Scholar 

  4. Capitanio, U. & Montorsi, F. Renal cancer. Lancet 387, 894–906 (2016).

    Article  PubMed  Google Scholar 

  5. Capitanio, U. et al. Epidemiology of renal cell carcinoma. Eur. Urol. 75, 74–84 (2019).

    Article  PubMed  Google Scholar 

  6. Rosiello, G., Larcher, A., Montorsi, F. & Capitanio, U. Renal cancer: overdiagnosis and overtreatment. World J. Urol. 39, 2821–2823 (2021).

    Article  PubMed  Google Scholar 

  7. Johnson, D. C. et al. Preoperatively misclassified, surgically removed benign renal masses: a systematic review of surgical series and United States population level burden estimate. J. Urol. 193, 30–35 (2015).

    Article  PubMed  Google Scholar 

  8. Fernando, A., Fowler, S. & O’Brien, T., British Association of Urological Surgeons. Nephron-sparing surgery across a nation — outcomes from the British Association of Urological Surgeons 2012 national partial nephrectomy audit. BJU Int. 117, 874–882 (2016).

    Article  PubMed  Google Scholar 

  9. Richard, P. O. et al. Renal tumor biopsy for small renal masses: a single-center 13-year experience. Eur. Urol. 68, 1007–1013 (2015).

    Article  PubMed  Google Scholar 

  10. Amaral, B. S. et al. Renal tumor biopsy: rationale to avoid surgery in small renal masses. Curr. Urol. Rep. 22, 46 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Ljungberg, B. et al. European association of urology guidelines on renal cell carcinoma: the 2022 update. Eur. Urol. 82, 399–410 (2022).

    Article  PubMed  Google Scholar 

  12. Ray, S., Cheaib, J. G. & Pierorazio, P. M. Active surveillance for small renal masses. Rev. Urol. 22, 9–16 (2020).

    PubMed  PubMed Central  Google Scholar 

  13. Farber, N. J. et al. Renal cell carcinoma: the search for a reliable biomarker. Transl. Cancer Res. 6, 620–632 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Rosellini, M. et al. Prognostic and predictive biomarkers for immunotherapy in advanced renal cell carcinoma. Nat. Rev. Urol. 20, 133–157 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Navani, V. & Heng, D. Y. C. Treatment selection in first-line metastatic renal cell carcinoma-the contemporary treatment paradigm in the age of combination therapy: a review. JAMA Oncol. 8, 292–299 (2022).

    Article  PubMed  Google Scholar 

  16. Rosellini, M. et al. Guiding treatment selection with immunotherapy compared to targeted therapy agents in patients with metastatic kidney cancer. Expert. Rev. Precis. Med. Drug. Dev. 7, 131–149 (2022).

    Article  Google Scholar 

  17. Jonasch, E. et al. Belzutifan for renal cell carcinoma in von Hippel-Lindau disease. N. Engl. J. Med. 385, 2036–2046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Powles, T. et al. Pembrolizumab versus placebo as post-nephrectomy adjuvant therapy for clear cell renal cell carcinoma (KEYNOTE-564): 30-month follow-up analysis of a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 23, 1133–1144 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Linehan, W. M. & Ricketts, C. J. The cancer genome atlas of renal cell carcinoma: findings and clinical implications. Nat. Rev. Urol. 16, 539–552 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Di Meo, A., Bartlett, J., Cheng, Y., Pasic, M. D. & Yousef, G. M. Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Mol. Cancer 16, 80 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. McKiernan, J. M. et al. The detection of renal carcinoma cells in the peripheral blood with an enhanced reverse transcriptase-polymerase chain reaction assay for MN/CA9. Cancer 86, 492–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Jahr, S. et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61, 1659–1665 (2001).

    CAS  PubMed  Google Scholar 

  24. Corro, C. et al. Detecting circulating tumor DNA in renal cancer: an open challenge. Exp. Mol. Pathol. 102, 255–261 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Fleischhacker, M. & Schmidt, B. Circulating nucleic acids (CNAs) and cancer — a survey. Biochim. Biophys. Acta 1775, 181–232 (2007).

    CAS  PubMed  Google Scholar 

  26. Gorin, M. A. et al. Circulating tumour cells as biomarkers of prostate, bladder, and kidney cancer. Nat. Rev. Urol. 14, 90–97 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. de Groot, A. E., Roy, S., Brown, J. S., Pienta, K. J. & Amend, S. R. Revisiting seed and soil: examining the primary tumor and cancer cell foraging in metastasis. Mol. Cancer Res. 15, 361–370 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. van der Toom, E. E., Verdone, J. E., Gorin, M. A. & Pienta, K. J. Technical challenges in the isolation and analysis of circulating tumor cells. Oncotarget 7, 62754–62766 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gong, J., Maia, M. C., Dizman, N., Govindarajan, A. & Pal, S. K. Metastasis in renal cell carcinoma: biology and implications for therapy. Asian J. Urol. 3, 286–292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. van der Toom, E. E. et al. Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies. Nat. Rev. Urol. 16, 7–22 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vona, G. et al. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am. J. Pathol. 156, 57–63 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reduzzi, C. et al. Development of a protocol for single-cell analysis of circulating tumor cells in patients with solid tumors. Adv. Exp. Med. Biol. 994, 83–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Blumke, K. et al. Detection of circulating tumor cells from renal carcinoma patients: experiences of a two-center study. Oncol. Rep. 14, 895–899 (2005).

    PubMed  Google Scholar 

  34. Allard, W. J. et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904 (2004).

    Article  PubMed  Google Scholar 

  35. Liu, S. et al. Combined cell surface carbonic anhydrase 9 and CD147 antigens enable high-efficiency capture of circulating tumor cells in clear cell renal cell carcinoma patients. Oncotarget 7, 59877–59891 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sperger, J. M. et al. Integrated analysis of multiple biomarkers from circulating tumor cells enabled by exclusion-based analyte isolation. Clin. Cancer Res. 23, 746–756 (2017).

    Article  PubMed  Google Scholar 

  37. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Cohen, S. J. et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 3213–3221 (2008).

    Article  PubMed  Google Scholar 

  39. Went, P. et al. Expression of epithelial cell adhesion molecule (EpCam) in renal epithelial tumors. Am. J. Surg. Pathol. 29, 83–88 (2005).

    Article  PubMed  Google Scholar 

  40. Zimpfer, A. et al. Prognostic and diagnostic implications of epithelial cell adhesion/activating molecule (EpCAM) expression in renal tumours: a retrospective clinicopathological study of 948 cases using tissue microarrays. BJU Int. 114, 296–302 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Zieglschmid, V. et al. Combination of immunomagnetic enrichment with multiplex RT-PCR analysis for the detection of disseminated tumor cells. Anticancer. Res. 25, 1803–1810 (2005).

    CAS  PubMed  Google Scholar 

  42. Uemura, H. et al. MN/CA IX/G250 as a potential target for immunotherapy of renal cell carcinomas. Br. J. Cancer 81, 741–746 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ye, Z. et al. Detecting and phenotyping of aneuploid circulating tumor cells in patients with various malignancies. Cancer Biol. Ther. 20, 546–551 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Z. L. et al. Dynamic changes of different phenotypic and genetic circulating tumor cells as a biomarker for evaluating the prognosis of RCC. Cancer Biol. Ther. 20, 505–512 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Nel, I. et al. Circulating tumor cell composition in renal cell carcinoma. PLoS One 11, e0153018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Haga, N. et al. Perioperative detection of circulating tumor cells in radical or partial nephrectomy for renal cell carcinoma. Ann. Surg. Oncol. 27, 1272–1281 (2020).

    Article  PubMed  Google Scholar 

  47. Wu, C., Xu, C., Wang, G., Zhang, D. & Zhao, X. Noninvasive circulating tumor cell and urine cellular XPC (rs2228001, A2815C) and XRCC1 (rs25487, G1196A) polymorphism detection as an effective screening panel for genitourinary system cancers. Transl. Cancer Res. 8, 2803–2812 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ge, L. et al. Clinical significance of circulating tumor cells detection in renal cell carcinoma with thrombus: a STROBE-compliant study. Medicine 99, e20615 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Gradilone, A. et al. Circulating tumor cells and “suspicious objects” evaluated through CellSearch® in metastatic renal cell carcinoma. Anticancer. Res. 31, 4219–4221 (2011).

    CAS  PubMed  Google Scholar 

  50. Zhang, T. et al. Development of a novel c-MET-based CTC detection platform. Mol. Cancer Res. 14, 539–547 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Basso, U. et al. Prognostic role of circulating tumor cells in metastatic renal cell carcinoma: a large, multicenter, prospective trial. Oncologist 26, 740–750 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bade, R. M. et al. Development and initial clinical testing of a multiplexed circulating tumor cell assay in patients with clear cell renal cell carcinoma. Mol. Oncol. 15, 2330–2344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bai, M. et al. Comparison of two detection systems for circulating tumor cells among patients with renal cell carcinoma. Int. Urol. Nephrol. 50, 1801–1809 (2018).

    Article  PubMed  Google Scholar 

  54. Xing, T., Wang, B., Song, Y., Zhang, S. & Ma, L. Candle soot-templated silica nanobiointerface chip for detecting circulating tumour cells from patients with urologic malignancies. RSC Adv. 8, 34566–34572 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nayak, B. et al. Role of circulating tumor cells in patients with metastatic clear-cell renal cell carcinoma. Urol. Oncol. 39, 135.e9–135.e15 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. El-Heliebi, A. et al. Are morphological criteria sufficient for the identification of circulating tumor cells in renal cancer? J. Transl. Med. 11, 214 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wu, S. et al. Classification of circulating tumor cells by epithelial-mesenchymal transition markers. PLoS One 10, e0123976 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Naoe, M. et al. Development of a highly sensitive technique for capturing renal cell cancer circulating tumor cells. Diagnostics 9, 96 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, M. et al. New applications of the acridine orange fluorescence staining method: screening for circulating tumor cells. Oncol. Lett. 13, 2221–2229 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Broncy, L. et al. Single-cell genetic analysis validates cytopathological identification of circulating cancer cells in patients with clear cell renal cell carcinoma. Oncotarget 9, 20058–20074 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Song, J. et al. Clinical significance of circulating tumour cells and Ki-67 in renal cell carcinoma. World J. Surg. Oncol. 19, 156 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Swaminathan, V. et al. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71, 5075–5080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kang, Y. T. et al. Cytopathological study of the circulating tumor cells filtered from the cancer patients’ blood using hydrogel-based cell block formation. Sci. Rep. 8, 15218 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kim, T. H. et al. Detection of circulating tumour cells and their potential use as a biomarker for advanced renal cell carcinoma. Can. Urol. Assoc. J. 13, E285–E291 (2019).

    PubMed  PubMed Central  Google Scholar 

  65. Cappelletti, V. et al. Analysis of single circulating tumor cells in renal cell carcinoma reveals phenotypic heterogeneity and genomic alterations related to progression. Int. J. Mol. Sci. 21, 1475 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lambros, M. B. et al. Single-cell analyses of prostate cancer liquid biopsies acquired by apheresis. Clin. Cancer Res. 24, 5635–5644 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Rupp, B., Ball, H., Wuchu, F., Nagrath, D. & Nagrath, S. Circulating tumor cells in precision medicine: challenges and opportunities. Trends Pharmacol. Sci. 43, 378–391 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Bluemke, K. et al. Detection of circulating tumor cells in peripheral blood of patients with renal cell carcinoma correlates with prognosis. Cancer Epidemiol. Biomark. Prev. 18, 2190–2194 (2009).

    Article  CAS  Google Scholar 

  69. Cimadamore, A. et al. Emerging molecular technologies in renal cell carcinoma: liquid biopsy. Cancers 11, 196 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jang, A. et al. Utility of circulating tumor DNA in monitoring treatment response to immune checkpoint inhibitors in patients with advanced genitourinary cancers. J. Clin. Oncol. 41, 721–721 (2023).

    Article  Google Scholar 

  71. Basu, A. et al. Longitudinal detection of circulating tumor DNA in patients with advanced renal cell carcinoma. J. Clin. Oncol. 41, 715–715 (2023).

    Article  Google Scholar 

  72. Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Grange, C. et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 71, 5346–5356 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, L., Wu, X., Wang, D., Luo, C. & Chen, L. Renal carcinoma cell-derived exosomes induce human immortalized line of Jurkat T lymphocyte apoptosis in vitro. Urol. Int. 91, 363–369 (2013).

    Article  PubMed  Google Scholar 

  75. Lindoso, R. S., Collino, F. & Camussi, G. Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells. Oncotarget 6, 7959–7969 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Xia, Y. et al. Negative regulation of tumor-infiltrating NK cell in clear cell renal cell carcinoma patients through the exosomal pathway. Oncotarget 8, 37783–37795 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gai, C., Pomatto, M. A. C., Grange, C., Deregibus, M. C. & Camussi, G. Extracellular vesicles in onco-nephrology. Exp. Mol. Med. 51, 1–8 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. De Toro, J., Herschlik, L., Waldner, C. & Mongini, C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front. Immunol. 6, 203 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Dong, L. et al. Recent advances in extracellular vesicle research for urological cancers: from technology to application. Biochim. Biophys. Acta Rev. Cancer 1871, 342–360 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Coumans, F. A. W. et al. Methodological guidelines to study extracellular vesicles. Circ. Res. 120, 1632–1648 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Dong, L. et al. Comprehensive evaluation of methods for small extracellular vesicles separation from human plasma, urine and cell culture medium. J. Extracell. Vesicles 10, e12044 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Nakai, W. et al. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci. Rep. 6, 33935 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Thery, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for extracellular vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zieren, R. C. et al. Extracellular vesicle isolation from human renal cancer tissue. Med. Oncol. 37, 28 (2020).

    Article  PubMed  Google Scholar 

  85. Pugholm, L. H., Revenfeld, A. L., Sondergaard, E. K. & Jorgensen, M. M. Antibody-based assays for phenotyping of extracellular vesicles. Biomed. Res. Int. 2015, 524817 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jang, S. C. et al. Mitochondrial protein enriched extracellular vesicles discovered in human melanoma tissues can be detected in patient plasma. J. Extracell. Vesicles 8, 1635420 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jingushi, K. et al. Leukocyte-associated immunoglobulin-like receptor 1 promotes tumorigenesis in RCC. Oncol. Rep. 41, 1293–1303 (2019).

    CAS  PubMed  Google Scholar 

  88. Himbert, D. et al. Characterization of CD147, CA9, and CD70 as tumor-specific markers on extracellular vesicles in clear cell renal cell carcinoma. Diagnostics 10, 1034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Del Boccio, P. et al. A hyphenated microLC-Q-TOF-MS platform for exosomal lipidomics investigations: application to RCC urinary exosomes. Electrophoresis 33, 689–696 (2012).

    Article  PubMed  Google Scholar 

  90. Raimondo, F. et al. Differential protein profiling of renal cell carcinoma urinary exosomes. Mol. Biosyst. 9, 1220–1233 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Butz, H. et al. Exosomal microRNAs are diagnostic biomarkers and can mediate cell-cell communication in renal cell carcinoma. Eur. Urol. Focus 2, 210–218 (2016).

    Article  PubMed  Google Scholar 

  92. De Palma, G. et al. The three-gene signature in urinary extracellular vesicles from patients with clear cell renal cell carcinoma. J. Cancer 7, 1960–1967 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Song, S. et al. Urinary exosome miR-30c-5p as a biomarker of clear cell renal cell carcinoma that inhibits progression by targeting HSPA5. J. Cell Mol. Med. 23, 6755–6765 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kuczler, M. D. et al. Advancements in the identification of EV derived mRNA biomarkers for liquid biopsy of clear cell renal cell carcinomas. Urology 160, 87–93 (2022).

    Article  PubMed  Google Scholar 

  95. Zhang, W. et al. MicroRNAs in serum exosomes as potential biomarkers in clear-cell renal cell carcinoma. Eur. Urol. Focus 4, 412–419 (2018).

    Article  PubMed  Google Scholar 

  96. Jingushi, K. et al. Extracellular vesicles isolated from human renal cell carcinoma tissues disrupt vascular endothelial cell morphology via azurocidin. Int. J. Cancer 142, 607–617 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, X. et al. Serum exosomal miR-210 as a potential biomarker for clear cell renal cell carcinoma. J. Cell Biochem. 120, 1492–1502 (2018).

    Article  PubMed  Google Scholar 

  98. Dias, F. et al. Extracellular vesicles enriched in hsa-miR-301a-3p and hsa-miR-1293 dynamics in clear cell renal cell carcinoma patients: potential biomarkers of metastatic disease. Cancers 12, 1450 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Iliuk, A. et al. Plasma-derived extracellular vesicle phosphoproteomics through chemical affinity purification. J. Proteome Res. 19, 2563–2574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Arance, E. et al. Determination of exosome mitochondrial DNA as a biomarker of renal cancer aggressiveness. Cancers 14, 199 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Xiao, C. T., Lai, W. J., Zhu, W. A. & Wang, H. MicroRNA derived from circulating exosomes as noninvasive biomarkers for diagnosing renal cell carcinoma. Onco Targets Ther. 13, 10765–10774 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. He, X. et al. Circulating exosomal mRNA signatures for the early diagnosis of clear cell renal cell carcinoma. BMC Med. 20, 270 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Qian, H. et al. Diagnosis of urogenital cancer combining deep learning algorithms and surface-enhanced Raman spectroscopy based on small extracellular vesicles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 281, 121603 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Linxweiler, J. & Junker, K. Extracellular vesicles in urological malignancies: an update. Nat. Rev. Urol. 17, 11–27 (2020).

    Article  PubMed  Google Scholar 

  105. Du, M. et al. Plasma exosomal miRNAs-based prognosis in metastatic kidney cancer. Oncotarget 8, 63703–63714 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Fujii, N. et al. Extracellular miR-224 as a prognostic marker for clear cell renal cell carcinoma. Oncotarget 8, 109877–109888 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Verzoni, E. et al. A platform for high-resolution immune liquid biopsy analysis to predict response in patients with renal cell carcinoma treated with nivolumab or cabozantinib: preliminary data from I-RENE trial (Meet-URO 8 study). J. Clin. Oncol. 41, 712–712 (2023).

    Article  Google Scholar 

  108. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Santos, P. & Almeida, F. Exosome-based vaccines: history, current state, and clinical trials. Front. Immunol. 12, 711565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rezaie, J., Feghhi, M. & Etemadi, T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun. Signal. 20, 145 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kim, M. S. et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12, 655–664 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Wu, H. et al. Bone marrow mesenchymal stem cells-derived exosomal microRNA-193a reduces cisplatin resistance of non-small cell lung cancer cells via targeting LRRC1. Cell Death Dis. 11, 801 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Celec, P., Vlkova, B., Laukova, L., Babickova, J. & Boor, P. Cell-free DNA: the role in pathophysiology and as a biomarker in kidney diseases. Expert. Rev. Mol. Med. 20, e1 (2018).

    Article  PubMed  Google Scholar 

  114. Mandel, P. & Metais, P. Nuclear acids in human blood plasma. C. R. Seances Soc. Biol. Fil. 142, 241–243 (1948).

    CAS  PubMed  Google Scholar 

  115. Stroun, M., Anker, P., Lyautey, J., Lederrey, C. & Maurice, P. A. Isolation and characterization of DNA from the plasma of cancer patients. Eur. J. Cancer Clin. Oncol. 23, 707–712 (1987).

    Article  CAS  PubMed  Google Scholar 

  116. Schwarzenbach, H., Hoon, D. S. & Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11, 426–437 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Dasari, A. et al. ctDNA applications and integration in colorectal cancer: an NCI Colon and Rectal-Anal Task Forces whitepaper. Nat. Rev. Clin. Oncol. 17, 757–770 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Leest, P. V. et al. Comparison of circulating cell-free DNA extraction methods for downstream analysis in cancer patients. Cancers 12, 1222 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ellinger, J. et al. Circulating mitochondrial DNA in serum: a universal diagnostic biomarker for patients with urological malignancies. Urol. Oncol. 30, 509–515 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Ellinger, J. et al. CpG island hypermethylation in cell-free serum DNA identifies patients with localized prostate cancer. Prostate 68, 42–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Torga, G. & Pienta, K. J. Patient-paired sample congruence between 2 commercial liquid biopsy tests. JAMA Oncol. 4, 868–870 (2018).

    Article  PubMed  Google Scholar 

  123. Teixeira, A. L., Dias, F., Gomes, M., Fernandes, M. & Medeiros, R. Circulating biomarkers in renal cell carcinoma: the link between microRNAs and extracellular vesicles, where are we now? J. Kidney Cancer VHL 1, 84–98 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zeuschner, P., Linxweiler, J. & Junker, K. Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies. Expert. Rev. Mol. Diagn. 20, 151–167 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Huang, G. et al. Combination of tumor suppressor miR-20b-5p, miR-30a-5p, and miR-196a-5p as a serum diagnostic panel for renal cell carcinoma. Pathol. Res. Pract. 216, 153152 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Wu, Y. et al. A serum-circulating long noncoding RNA signature can discriminate between patients with clear cell renal cell carcinoma and healthy controls. Oncogenesis 5, e192 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zaporozhchenko, I. A., Ponomaryova, A. A., Rykova, E. Y. & Laktionov, P. P. The potential of circulating cell-free RNA as a cancer biomarker: challenges and opportunities. Expert. Rev. Mol. Diagn. 18, 133–145 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Tosar, J. P., Witwer, K. & Cayota, A. Revisiting extracellular RNA release, processing, and function. Trends Biochem. Sci. 46, 438–445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hauser, S. et al. Cell-free circulating DNA: diagnostic value in patients with renal cell cancer. Anticancer. Res. 30, 2785–2789 (2010).

    CAS  PubMed  Google Scholar 

  130. Wan, J., Zhu, L., Jiang, Z. & Cheng, K. Monitoring of plasma cell-free DNA in predicting postoperative recurrence of clear cell renal cell carcinoma. Urol. Int. 91, 273–278 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Feng, G. et al. Quantification of plasma cell-free DNA in predicting therapeutic efficacy of sorafenib on metastatic clear cell renal cell carcinoma. Dis. Markers 34, 105–111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Skrypkina, I. et al. Concentration and methylation of cell-free DNA from blood plasma as diagnostic markers of renal cancer. Dis. Markers 2016, 3693096 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. de Martino, M., Klatte, T., Haitel, A. & Marberger, M. Serum cell-free DNA in renal cell carcinoma: a diagnostic and prognostic marker. Cancer 118, 82–90 (2012).

    Article  PubMed  Google Scholar 

  134. Lu, H. et al. Diagnostic and prognostic potential of circulating cell-free genomic and mitochondrial DNA fragments in clear cell renal cell carcinoma patients. Clin. Chim. Acta 452, 109–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra224 (2014).

    Article  Google Scholar 

  136. Hauser, S., Zahalka, T., Fechner, G., Muller, S. C. & Ellinger, J. Serum DNA hypermethylation in patients with kidney cancer: results of a prospective study. Anticancer. Res. 33, 4651–4656 (2013).

    CAS  PubMed  Google Scholar 

  137. Costa, V. L. et al. TCF21 and PCDH17 methylation: an innovative panel of biomarkers for a simultaneous detection of urological cancers. Epigenetics 6, 1120–1130 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Outeiro-Pinho, G. et al. MicroRNA-30a-5p(me): a novel diagnostic and prognostic biomarker for clear cell renal cell carcinoma in tissue and urine samples. J. Exp. Clin. Cancer Res. 39, 98 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nuzzo, P. V. et al. Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes. Nat. Med. 26, 1041–1043 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lasseter, K. et al. Plasma cell-free DNA variant analysis compared with methylated DNA analysis in renal cell carcinoma. Genet. Med. 22, 1366–1373 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Hahn, A. W. et al. Correlation of genomic alterations assessed by next-generation sequencing (NGS) of tumor tissue DNA and circulating tumor DNA (ctDNA) in metastatic renal cell carcinoma (mRCC): potential clinical implications. Oncotarget 8, 33614–33620 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Pal, S. K. et al. Evolution of circulating tumor DNA profile from first-line to subsequent therapy in metastatic renal cell carcinoma. Eur. Urol. 72, 557–564 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Maia, M. C. et al. Association of circulating tumor DNA (ctDNA) detection in metastatic renal cell carcinoma (mRCC) with tumor burden. Kidney Cancer 1, 65–70 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Yamamoto, Y. et al. Clinical significance of the mutational landscape and fragmentation of circulating tumor DNA in renal cell carcinoma. Cancer Sci. 110, 617–628 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bacon, J. V. W. et al. Plasma circulating tumor DNA and clonal hematopoiesis in metastatic renal cell carcinoma. Clin. Genitourin. Cancer 18, 322–331 e322 (2020).

    Article  PubMed  Google Scholar 

  146. Smith, C. G. et al. Comprehensive characterization of cell-free tumor DNA in plasma and urine of patients with renal tumors. Genome Med. 12, 23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sumiyoshi, T. et al. Detection of von Hippel-Lindau gene mutation in circulating cell-free DNA for clear cell renal cell carcinoma. Cancer Sci. 112, 3363–3374 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pascual, J. et al. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO precision medicine working group. Ann. Oncol. 33, 750–768 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.C.Z. discloses support for the research of this work from the Stichting Cure for Cancer Foundation, Amsterdam, the Netherlands. K.J.P. discloses support for the research of this work from the NCI [grant numbers U54CA143803, CA163124, CA093900 and CA143055] and the Prostate Cancer Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.C.Z. researched data for the article. All authors contributed substantially to discussion of the content. R.C.Z. and A.D.B. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Richard C. Zieren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Francesco Massari, Carmen Jeronimo and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zieren, R.C., Zondervan, P.J., Pienta, K.J. et al. Diagnostic liquid biopsy biomarkers in renal cell cancer. Nat Rev Urol 21, 133–157 (2024). https://doi.org/10.1038/s41585-023-00818-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00818-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer