Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert recommendation
  • Published:

Improved phenotypic classification of male infertility to promote discovery of genetic causes

Abstract

An increasing number of genes are being described in the context of non-syndromic male infertility. Linking the underlying genetic causes of non-syndromic male infertility with clinical data from patients is important to establish new genotype–phenotype correlations. This process can be facilitated by using universal nomenclature, but no standardized vocabulary is available in the field of non-syndromic male infertility. The International Male Infertility Genomics Consortium aimed at filling this gap, providing a standardized vocabulary containing nomenclature based on the Human Phenotype Ontology (HPO). The “HPO tree” was substantially revised compared with the previous version and is based on the clinical work-up of infertile men, including physical examination and hormonal assessment. Some causes of male infertility can already be suspected based on the patient’s clinical history, whereas in other instances, a testicular biopsy is needed for diagnosis. We assembled 49 HPO terms that are linked in a logical hierarchy and showed examples of morphological features of spermatozoa and testicular histology of infertile men with identified genetic diagnoses to describe the phenotypes. This work will help to record patients’ phenotypes systematically and facilitate communication between geneticists and andrologists. Collaboration across institutions will improve the identification of patients with the same phenotypes, which will promote the discovery of novel genetic causes for non-syndromic male infertility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The novel HPO tree.
Fig. 2: Selected HPO terms and associated semen and testicular phenotypes.
Fig. 3: Spermatogenic phenotypes of men with aberrant sperm morphology.
Fig. 4: Broad spectrum of testicular phenotypes observed in histology samples from infertile men with a genetic diagnosis.

Similar content being viewed by others

References

  1. Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krausz, C. & Riera-Escamilla, A. Genetics of male infertility. Nat. Rev. Urol. 15, 369–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Oud, M. S. et al. A systematic review and standardized clinical validity assessment of male infertility genes. Hum. Reprod. 34, 932–941 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agarwal, A., Mulgund, A., Hamada, A. & Chyatte, M. R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 13, 37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wyrwoll, M. J. et al. Genetic architecture of azoospermia-time to advance the standard of care. Eur. Urol. 83, 452–462 (2022).

    Article  PubMed  Google Scholar 

  6. Köhler, S. et al. The human phenotype ontology in 2017. Nucleic Acids Res. 45, D865–D876 (2017).

    Article  PubMed  Google Scholar 

  7. Köhler, S. et al. The human phenotype ontology in 2021. Nucleic Acids Res. 49, D1207–D1217 (2021).

    Article  PubMed  Google Scholar 

  8. Akawi, N. et al. Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families. Nat. Genet. 47, 1363–1369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vissers, L. E. L. M. & Veltman, J. A. Standardized phenotyping enhances Mendelian disease gene identification. Nat. Genet. 47, 1222–1224 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Hamosh, A., Scott, A. F., Amberger, J., Valle, D. & McKusick, V. A. Online Mendelian inheritance in man (OMIM). Hum. Mutat. 15, 57–61 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Rath, A. et al. Representation of rare diseases in health information systems: the Orphanet approach to serve a wide range of end users. Hum. Mutat. 33, 803–808 (2012).

    Article  PubMed  Google Scholar 

  12. Köhler, S. et al. The human phenotype ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42, D966–D974 (2014).

    Article  PubMed  Google Scholar 

  13. Firth, H. V. et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using Ensembl resources. Am. J. Hum. Genet. 84, 524–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nieschlag, E., Behre, H. M. & Nieschlag, S. Andrology: male reproductive health and dysfunction (Springer, 2010).

  15. McLachlan, R. I., Rajpert-De Meyts, E., Hoei-Hansen, C. E., de Kretser, D. M. & Skakkebaek, N. E. Histological evaluation of the human testis — approaches to optimizing the clinical value of the assessment: mini review. Hum. Reprod. 22, 2–16 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. World Health Organization. WHO laboratory manual for examination and processing of human semen 6th edn (WHO, 2021).

  17. Schlegel, P. N. et al. Diagnosis and treatment of infertility in men: AUA/ASRM guideline part II. J. Urol. 205, 44–51 (2021).

    Article  PubMed  Google Scholar 

  18. Robinson, P. N. et al. The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am. J. Hum. Genet. 83, 610–615 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pavan, S. et al. Clinical practice guidelines for rare diseases: the Orphanet database. PLoS One 12, e0170365 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Boehm, U. et al. European consensus statement on congenital hypogonadotropic hypogonadism — pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 11, 547–564 (2015).

    Article  PubMed  Google Scholar 

  21. Lenzi, A. et al. Epidemiology; diagnosis, and treatment of male hypogonadotropic hypogonadism. J. Endocrinol. Invest. 32, 934–938 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Chudnovsky, A. & Niederberger, C. S. Gonadotropin therapy for infertile men with hypogonadotropic hypogonadism. J. Androl. 28, 644–646 (2007).

    Article  PubMed  Google Scholar 

  23. Yabiku, R. S. et al. A search for disorders of sex development among infertile men. Sex. Dev. 12, 275–280 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Mohnach, L. et al. Nonsyndromic Disorders of Testicular Development Overview. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK1547/ (updated 18 Aug 2022).

  25. Young, J. Approach to the male patient with congenital hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 97, 707–718 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Young, J. et al. Clinical management of congenital hypogonadotropic hypogonadism. Endocr. Rev. 40, 669–710 (2019).

    Article  PubMed  Google Scholar 

  27. Salonia, A. et al. Sexual and Reproductive Health EAU Guidelines. Uroweb https://uroweb.org/guidelines/sexual-and-reproductive-health/chapter/male-infertility (2021).

  28. Barratt, C. L. R. et al. The diagnosis of male infertility: an analysis of the evidence to support the development of global WHO guidance — challenges and future research opportunities. Hum. Reprod. Update 23, 660–680 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Björndahl, L. et al. Standards in semen examination: publishing reproducible and reliable data based on high-quality methodology. Hum. Reprod. 37, 2497–2502 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Oud, M. S. et al. Exome sequencing reveals novel causes as well as new candidate genes for human globozoospermia. Hum. Reprod. 35, 240–252 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sironen, A., Shoemark, A., Patel, M., Loebinger, M. R. & Mitchison, H. M. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell. Mol. Life Sci. 77, 2029–2048 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Choy, J. T. & Amory, J. K. Nonsurgical management of oligozoospermia. J. Clin. Endocrinol. Metab. 105, e4194–e4207 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vloeberghs, V. et al. How successful is TESE-ICSI in couples with non-obstructive azoospermia? Hum. Reprod. 30, 1790–1796 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Tournaye, H., Krausz, C. & Oates, R. D. Concepts in diagnosis and therapy for male reproductive impairment. Lancet Diabetes Endocrinol. 5, 554–564 (2017).

    Article  PubMed  Google Scholar 

  35. Krausz, C. Male infertility: pathogenesis and clinical diagnosis. Best. Pract. Res. Clin. Endocrinol. Metab. 25, 271–285 (2011).

    Article  PubMed  Google Scholar 

  36. Lotti, F. et al. The European Academy of Andrology (EAA) ultrasound study on healthy, fertile men: an overview on male genital tract ultrasound reference ranges. Andrology 10, 118–132 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lotti, F. & Maggi, M. Ultrasound of the male genital tract in relation to male reproductive health. Hum. Reprod. Update 21, 56–83 (2015).

    Article  PubMed  Google Scholar 

  38. Schoor, R. A., Elhanbly, S., Niederberger, C. S. & Ross, L. S. The role of testicular biopsy in the modern management of male infertility. J. Urol. 167, 197–200 (2002).

    Article  PubMed  Google Scholar 

  39. Wosnitzer, M. S. & Goldstein, M. Obstructive azoospermia. Urol. Clin. North. Am. 41, 83–95 (2014).

    Article  PubMed  Google Scholar 

  40. Lotti, F. et al. The prevalence of midline prostatic cysts and the relationship between cyst size and semen parameters among infertile and fertile men. Hum. Reprod. 33, 2023–2034 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Schlegel, P. N. Causes of azoospermia and their management. Reprod. Fertil. Dev. 16, 561–572 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Anguiano, A. et al. Congenital bilateral absence of the vas deferens: a primarily genital form of cystic fibrosis. JAMA 267, 1794–1797 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Corona, G. et al. Sperm recovery and ICSI outcomes in men with non-obstructive azoospermia: a systematic review and meta-analysis. Hum. Reprod. Update 25, 733–757 (2019).

    Article  PubMed  Google Scholar 

  44. Bernie, A. M., Mata, D. A., Ramasamy, R. & Schlegel, P. N. Comparison of microdissection testicular sperm extraction, conventional testicular sperm extraction, and testicular sperm aspiration for nonobstructive azoospermia: a systematic review and meta-analysis. Fertil. Steril. 104, 1099–1103 (2015). e1–3.

    Article  PubMed  Google Scholar 

  45. Deruyver, Y., Vanderschueren, D. & Van der Aa, F. Outcome of microdissection TESE compared with conventional TESE in non-obstructive azoospermia: a systematic review. Andrology 2, 20–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Fietz, D. & Bergmann, M. in Endocrinology of the Testis and Male Reproduction (eds Simoni, M. & Huhtaniemi, I.) (Springer Cham, 2017).

  47. Bergmann, M. & Kliesch, S. in Andrology (eds Nieschlag, E., Behre, H. M. & Nieschlag, S.) 155–167 (Springer Berlin Heidelberg, 2010).

  48. Johnsen, S. G. Testicular biopsy score count — a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Horm. Res. Paediatr. 1, 2–25 (1970).

    Article  CAS  Google Scholar 

  49. O’Donnell, L. Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis 4, e979623 (2014).

    Article  PubMed  Google Scholar 

  50. Zhengwei, Y., Wreford, N. G., Royce, P., de Kretser, D. M. & McLachlan, R. I. Stereological evaluation of human spermatogenesis after suppression by testosterone treatment: heterogeneous pattern of spermatogenic impairment. J. Clin. Endocrinol. Metab. 83, 1284–1291 (1998).

    CAS  PubMed  Google Scholar 

  51. Aitken, R. J. & Lewis, S. E. M. DNA damage in testicular germ cells and spermatozoa. When and how is it induced? How should we measure it? What does it mean? Andrology. https://doi.org/10.1111/andr.13375 (2023).

  52. Derijck, A. A. H. A. et al. Motile human normozoospermic and oligozoospermic semen samples show a difference in double-strand DNA break incidence. Hum. Reprod. 22, 2368–2376 (2007).

    Article  PubMed  Google Scholar 

  53. Sun, X. et al. The Catsper channel and its roles in male fertility: a systematic review. Reprod. Biol. Endocrinol. 15, 65 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Young, S. et al. Unexplained infertility is frequently caused by defective CatSper function preventing sperm from penetrating the egg coat. Preprint at medRxiv https://doi.org/10.1101/2023.03.23.23286813 (2023).

  55. Bonte, D. et al. Assisted oocyte activation significantly increases fertilization and pregnancy outcome in patients with low and total failed fertilization after intracytoplasmic sperm injection: a 17-year retrospective study. Fertil. Steril. 112, 266–274 (2019).

    Article  PubMed  Google Scholar 

  56. Shefchek, K. A. et al. The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 48, D704–D715 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Köhler, S. et al. Expansion of the human phenotype ontology (HPO) knowledge base and resources. Nucleic Acids Res. 47, D1018–D1027 (2019).

    Article  PubMed  Google Scholar 

  58. Amer, M., Haggar, S. E., Moustafa, T., Abd El-Naser, T. & Zohdy, W. Testicular sperm extraction: impact of testicular histology on outcome, number of biopsies to be performed and optimal time for repetition. Hum. Reprod. 14, 3030–3034 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Tournaye, H. et al. Correlation between testicular histology and outcome after intracytoplasmic sperm injection using testicular spermatozoa. Hum. Reprod. 11, 127–132 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Brenker for providing pictures of sperm phenotypes shown in Fig. 3 and C. Brennecka for language editing. This study was carried out within the framework of and supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) sponsored Clinical Research Unit ‘Male Germ Cells’ (CRU326, project number 329621271). C.K., F.T. and J.A.V. belong to Action CA20119 ‘ANDRONET’, which is supported by COST (European Cooperation in Science and Technology, https://www.cost.eu/).

Author information

Authors and Affiliations

Authors

Contributions

F.T., M.J.W. and G.W.v.d.H. researched data for the article. All authors contributed substantially to discussion of the content. F.T., M.J.W. and G.W.v.d.H. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Frank Tüttelmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Francesco Lotti, Sandro Esteves and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyrwoll, M.J., van der Heijden, G.W., Krausz, C. et al. Improved phenotypic classification of male infertility to promote discovery of genetic causes. Nat Rev Urol 21, 91–101 (2024). https://doi.org/10.1038/s41585-023-00816-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00816-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research