Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Calcium signalling pathways in prostate cancer initiation and progression

Abstract

Cancer cells proliferate, differentiate and migrate by repurposing physiological signalling mechanisms. In particular, altered calcium signalling is emerging as one of the most widespread adaptations in cancer cells. Remodelling of calcium signalling promotes the development of several malignancies, including prostate cancer. Gene expression data from in vitro, in vivo and bioinformatics studies using patient samples and xenografts have shown considerable changes in the expression of various components of the calcium signalling toolkit during the development of prostate cancer. Moreover, preclinical and clinical evidence suggests that altered calcium signalling is a crucial component of the molecular re-programming that drives prostate cancer progression. Evidence points to calcium signalling re-modelling, commonly involving crosstalk between calcium and other cellular signalling pathways, underpinning the onset and temporal progression of this disease. Discrete alterations in calcium signalling have been implicated in hormone-sensitive, castration-resistant and aggressive variant forms of prostate cancer. Hence, modulation of calcium signals and downstream effector molecules is a plausible therapeutic strategy for both early and late stages of prostate cancer. Based on this premise, clinical trials have been undertaken to establish the feasibility of targeting calcium signalling specifically for prostate cancer.

Key points

  • Calcium is a ubiquitous ion that has crucial roles in many cellular pathways.

  • Aberrations in calcium signalling can result in pathogenic phenotypes, including cancer.

  • The onset and progression of prostate cancer are characterized by the altered expression of several calcium signalling mediators, including TRPs, VGCCs, and ORAI–STIM.

  • Dysregulation of calcium signalling enhances the survival, proliferation, migration, invasiveness and drug resistance of prostate cancer cells, with discrete alterations in calcium signalling and downstream signalling outcomes occurring at different stages of cancer progression.

  • Targeting calcium signalling mediators is a promising strategy for developing novel drugs for treating prostate cancer and other malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of prostate cancer.
Fig. 2: Components of the calcium signalling toolkit.
Fig. 3: Dysregulation of calcium signalling toolkit components in prostate cancer.
Fig. 4: Calcium signalling toolkit components involved in bone metastases.
Fig. 5: Unified model of calcium signalling alterations in prostate cancer.

Similar content being viewed by others

References

  1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Rebello, R. J. et al. Prostate cancer. Nat. Rev. Dis. Prim. 7, 9 (2021).

    Article  PubMed  Google Scholar 

  3. Taichman, R. S., Loberg, R. D., Mehra, R. & Pienta, K. J. The evolving biology and treatment of prostate cancer. J. Clin. Invest. 117, 2351–2361 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leslie, S. W., Soon-Sutton, T. L., Sajjad, H. & Siref, L. E. Prostate cancer. In StatPearls [Internet] (StatPearls, 2022).

  5. Crawford, E. D. et al. Androgen-targeted therapy in men with prostate cancer: evolving practice and future considerations. Prostate Cancer Prostatic Dis. 22, 24–38 (2019).

    Article  PubMed  Google Scholar 

  6. Ehsani, M., David, F. O. & Baniahmad, A. Androgen receptor-dependent mechanisms mediating drug resistance in prostate cancer. Cancers 13, 1534 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoang, D. T., Iczkowski, K. A., Kilari, D., See, W. & Nevalainen, M. T. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: opportunities for therapeutic targeting from multiple angles. Oncotarget 8, 3724–3745 (2017).

    Article  PubMed  Google Scholar 

  8. Merkens, L. et al. Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation. J. Exp. Clin. Cancer Res. 41, 46 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Montironi, R. et al. Morphologic, molecular and clinical features of aggressive variant prostate cancer. Cells 9, 1073 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bruce, J. I. E. & James, A. D. Targeting the calcium signalling machinery in cancer. Cancers 12, 2351 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parys, J. B., Bultynck, G. & Vervliet, T. IP3 receptor biology and endoplasmic reticulum calcium dynamics in cancer. Prog. Mol. Subcell. Biol. 59, 215–237 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Cui, C., Merritt, R., Fu, L. & Pan, Z. Targeting calcium signaling in cancer therapy. Acta Pharm. Sin. B 7, 3–17 (2017).

    Article  PubMed  Google Scholar 

  13. Packer, J. R. & Maitland, N. J. The molecular and cellular origin of human prostate cancer. Biochim. Biophys. Acta 1863, 1238–1260 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Goel, S., Bhatia, V., Biswas, T. & Ateeq, B. Epigenetic reprogramming during prostate cancer progression: a perspective from development. Semin. Cancer Biol. 83, 136–151 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Ngollo, M. et al. Epigenetic modifications in prostate cancer. Epigenomics 6, 415–426 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Schagdarsurengin, U. et al. Impairment of IGF2 gene expression in prostate cancer is triggered by epigenetic dysregulation of IGF2-DMR0 and its interaction with KLF4. Cell Commun. Signal. 15, 40 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Goel, S., Bhatia, V., Biswas, T. & Ateeq, B. Epigenetic reprogramming during prostate cancer progression: a perspective from development. Semin. Cancer Biol. https://doi.org/10.1016/j.semcancer.2021.01.009 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bowen, C., Ostrowski, M. C., Leone, G. & Gelmann, E. P. Loss of PTEN accelerates NKX3.1 degradation to promote prostate cancer progression. Cancer Res. 79, 4124–4134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Le Magnen, C. et al. Cooperation of loss of NKX3.1 and inflammation in prostate cancer initiation. Dis. Model. Mech. 11, dmm035139 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fu, Z. & Tindall, D. J. FOXOs, cancer and regulation of apoptosis. Oncogene 27, 2312–2319 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, Y. et al. Loss of FOXO1 cooperates with TMPRSS2-ERG overexpression to promote prostate tumorigenesis and cell invasion. Cancer Res. 77, 6524–6537 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Selvaraj, N., Budka, J. A., Ferris, M. W., Jerde, T. J. & Hollenhorst, P. C. Prostate cancer ETS rearrangements switch a cell migration gene expression program from RAS/ERK to PI3K/AKT regulation. Mol. Cancer 13, 61 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Barbieri, C. E. et al. The mutational landscape of prostate cancer. Eur. Urol. 64, 567–576 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arora, K. & Barbieri, C. E. Molecular subtypes of prostate cancer. Curr. Oncol. Rep. 20, 58 (2018).

    Article  PubMed  Google Scholar 

  25. Blattner, M. et al. SPOP mutation drives prostate tumorigenesis in vivo through coordinate regulation of PI3K/mTOR and AR signaling. Cancer Cell 31, 436–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tiwari, R., Manzar, N. & Ateeq, B. Dynamics of cellular plasticity in prostate cancer progression. Front. Mol. Biosci. 7, 130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dong, Z. et al. Matrix metalloproteinase activity and osteoclasts in experimental prostate cancer bone metastasis tissue. Am. J. Pathol. 166, 1173–1186 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Haute, C., De Ridder, D. & Nilius, B. TRP channels in human prostate. ScientificWorldJournal 10, 1597–1611 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gkika, D. & Prevarskaya, N. TRP channels in prostate cancer: the good, the bad and the ugly? Asian J. Androl. 13, 673–676 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Canales, J. et al. A TR(i)P to cell migration: new roles of TRP channels in mechanotransduction and cancer. Front. Physiol. 10, 757 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wu, X. et al. Increased EZH2 expression in prostate cancer is associated with metastatic recurrence following external beam radiotherapy. Prostate 79, 1079–1089 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ruggero, K., Farran-Matas, S., Martinez-Tebar, A. & Aytes, A. Epigenetic regulation in prostate cancer progression. Curr. Mol. Biol. Rep. 4, 101–115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kunderfranco, P. et al. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS ONE 5, e10547 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Feng, Q. & He, B. Androgen receptor signaling in the development of castration-resistant prostate cancer. Front. Oncol. 9, 858 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Attard, G., Richards, J. & de Bono, J. S. New strategies in metastatic prostate cancer: targeting the androgen receptor signaling pathway. Clin. Cancer Res. 17, 1649–1657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferraldeschi, R., Welti, J., Luo, J., Attard, G. & de Bono, J. S. Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects. Oncogene 34, 1745–1757 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Obinata, D. et al. Recent discoveries in the androgen receptor pathway in castration-resistant prostate cancer. Front. Oncol. 10, 581515 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kaarijärvi, R., Kaljunen, H. & Ketola, K. Molecular and functional links between neurodevelopmental processes and treatment-induced neuroendocrine plasticity in prostate cancer progression. Cancers 13, 692 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Crea, F. et al. The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer. Epigenomics 8, 721–731 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Dardenne, E. et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 30, 563–577 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berger, A. et al. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. J. Clin. Invest. 129, 3924–3940 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mariot, P., Vanoverberghe, K., Lalevee, N., Rossier, M. F. & Prevarskaya, N. Overexpression of an alpha 1H (Cav3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J. Biol. Chem. 277, 10824–10833 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Gackière, F. et al. CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J. Biol. Chem. 283, 10162–10173 (2008).

    Article  PubMed  Google Scholar 

  44. Hall, M. et al. Androgen receptor signaling regulates T-type Ca2+ channel expression and neuroendocrine differentiation in prostate cancer cells. Am. J. Cancer Res. 8, 732–747 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, R., Dong, X. & Gleave, M. Molecular model for neuroendocrine prostate cancer progression. BJU Int. 122, 560–570 (2018).

    Article  PubMed  Google Scholar 

  46. Mather, R. L. et al. The evolutionarily conserved long non-coding RNA LINC00261 drives neuroendocrine prostate cancer proliferation and metastasis via distinct nuclear and cytoplasmic mechanisms. Mol. Oncol. 15, 1921–1941 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Beltran, H. et al. Aggressive variants of castration-resistant prostate cancer. Clin. Cancer Res. 20, 2846–2850 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kappel, S., Ross-Kaschitza, D., Hauert, B., Rother, K. & Peinelt, C. p53 alters intracellular Ca2+ signaling through regulation of TRPM4. Cell Calcium 104, 102591 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Shiao, S. L., Chu, G. C.-Y. & Chung, L. W. K. Regulation of prostate cancer progression by the tumor microenvironment. Cancer Lett. 380, 340–348 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de Bono, J. S. et al. Prostate carcinogenesis: inflammatory storms. Nat. Rev. Cancer 20, 455–469 (2020).

    Article  PubMed  Google Scholar 

  51. Nguyen, D. P., Li, J. & Tewari, A. K. Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int. 113, 986–992 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Calcinotto, A. et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature 559, 363–369 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Haffner, M. C. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. 42, 668–675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, Z. et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol. 35, S224–S243 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. McKeown, S. R. Defining normoxia, physoxia and hypoxia in tumours — implications for treatment response. Br. J. Radiol. 87, 20130676 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Butterworth, K. T. et al. Hypoxia selects for androgen independent LNCaP cells with a more malignant geno- and phenotype. Int. J. Cancer 123, 760–768 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Lyu, F. et al. Identification of ISG15 and ZFP36 as novel hypoxia- and immune-related gene signatures contributing to a new perspective for the treatment of prostate cancer by bioinformatics and experimental verification. J. Transl. Med. 20, 202 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bao, B. et al. Hypoxia induced aggressiveness of prostate cancer cells is linked with deregulated expression of VEGF, IL-6 and miRNAs that are attenuated by CDF. PLoS ONE 7, e43726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Emami Nejad, A. et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int. 21, 62 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ranasinghe, W. K. B., Baldwin, G. S., Shulkes, A., Bolton, D. & Patel, O. Normoxic regulation of HIF-1α in prostate cancer. Nat. Rev. Urol. 11, 419 (2014).

    Article  PubMed  Google Scholar 

  61. de Almeida, A. et al. Aquaglyceroporin-3’s expression and cellular localization is differentially modulated by hypoxia in prostate cancer cell lines. Cells 10, 838 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Krishnamachary, B. et al. Hypoxia theranostics of a human prostate cancer xenograft and the resulting effects on the tumor microenvironment. Neoplasia 22, 679–688 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bonollo, F., Thalmann, G. N., Kruithof-de Julio, M. & Karkampouna, S. The role of cancer-associated fibroblasts in prostate cancer tumorigenesis. Cancers 12, 1887 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Krušlin, B., Ulamec, M. & Tomas, D. Prostate cancer stroma: an important factor in cancer growth and progression. Bosn. J. Basic. Med. Sci. 15, 1–8 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. Bohonowych, J. E. et al. Extracellular Hsp90 mediates an NF-κB dependent inflammatory stromal program: implications for the prostate tumor microenvironment. Prostate 74, 395–407 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Chen, B., Liu, J., Ho, T.-T., Ding, X. & Mo, Y.-Y. ERK-mediated NF-κB activation through ASIC1 in response to acidosis. Oncogenesis 5, e279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Osorio, L. A., Farfán, N. M., Castellón, E. A. & Contreras, H. R. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells. Mol. Med. Rep. 13, 778–786 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Adekoya, T. O. & Richardson, R. M. Cytokines and chemokines as mediators of prostate cancer metastasis. Int. J. Mol. Sci. 21, 4449 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ammirante, M., Shalapour, S., Kang, Y., Jamieson, C. A. M. & Karin, M. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc. Natl Acad. Sci. USA 111, 14776–14781 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Woo, J. R. et al. Tumor infiltrating B-cells are increased in prostate cancer tissue. J. Transl. Med. 12, 30 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ammirante, M., Luo, J.-L., Grivennikov, S., Nedospasov, S. & Karin, M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schlaepfer, I. R. et al. Hypoxia induces triglycerides accumulation in prostate cancer cells and extracellular vesicles supporting growth and invasiveness following reoxygenation. Oncotarget 6, 22836–22856 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ramteke, A. et al. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol. Carcinog. 54, 554–565 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Deep, G. et al. Exosomes secreted by prostate cancer cells under hypoxia promote matrix metalloproteinases activity at pre-metastatic niches. Mol. Carcinog. 59, 323–332 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Furesi, G. et al. Exosomal miRNAs from prostate cancer impair osteoblast function in mice. Int. J. Mol. Sci. 23, 1285 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Deep, G. & Panigrahi, G. K. Hypoxia-induced signaling promotes prostate cancer progression: exosomes role as messenger of hypoxic response in tumor microenvironment. Crit. Rev. Oncog. 20, 419–434 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang, Y. et al. Loss of exosomal miR-146a-5p from cancer-associated fibroblasts after androgen deprivation therapy contributes to prostate cancer metastasis. J. Exp. Clin. Cancer Res. 39, 282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Scimeca, M. et al. Prostate osteoblast-like cells: a reliable prognostic marker of bone metastasis in prostate cancer patients. Contrast Media Mol. Imaging 2018, 9840962 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Singh, S., Martin, E., Tregidgo, H. F. J., Treeby, B. & Bandula, S. Prostatic calcifications: quantifying occurrence, radiodensity, and spatial distribution in prostate cancer patients. Urol. Oncol. 39, 728.e1–728.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Pope, D. J. et al. The investigation of prostatic calcifications using μ-PIXE analysis and their dosimetric effect in low dose rate brachytherapy treatments using Geant4. Phys. Med. Biol. 60, 4335–4353 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Dautova, Y. et al. Calcium phosphate particles stimulate interleukin-1β release from human vascular smooth muscle cells: a role for spleen tyrosine kinase and exosome release. J. Mol. Cell. Cardiol. 115, 82–93 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Borel, M. et al. Prostate cancer-derived exosomes promote osteoblast differentiation and activity through phospholipase D2. Biochim. Biophys. acta Mol. Basis Dis. 1866, 165919 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Maolake, A. et al. Tumor necrosis factor-α induces prostate cancer cell migration in lymphatic metastasis through CCR7 upregulation. Cancer Sci. 109, 1524–1531 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huang, S. et al. Acidic extracellular pH promotes prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs. Oncol. Rep. 36, 2025–2032 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Li, Z. et al. Increased tumoral microenvironmental pH improves cytotoxic effect of pharmacologic ascorbic acid in castration-resistant prostate cancer cells. Front. Pharmacol. 11, 570939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sigorski, D., Gulczyński, J., Sejda, A., Rogowski, W. & Iżycka-Świeszewska, E. Investigation of neural microenvironment in prostate cancer in context of neural density, perineural invasion, and neuroendocrine profile of tumors. Front. Oncol. 11, 710899 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, W. et al. Nerves in the tumor microenvironment: origin and effects. Front. Cell Dev. Biol. 8, 601738 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. March, B. et al. Tumour innervation and neurosignalling in prostate cancer. Nat. Rev. Urol. 17, 119–130 (2020).

    Article  PubMed  Google Scholar 

  89. Dobrenis, K., Gauthier, L. R., Barroca, V. & Magnon, C. Granulocyte colony-stimulating factor off-target effect on nerve outgrowth promotes prostate cancer development. Int. J. Cancer 136, 982–988 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. He, S. et al. The chemokine (CCL2-CCR2) signaling axis mediates perineural invasion. Mol. Cancer Res. 13, 380–390 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Lee, Y.-C. et al. Secretome analysis of an osteogenic prostate tumor identifies complex signaling networks mediating cross-talk of cancer and stromal cells within the tumor microenvironment. Mol. Cell. Proteom. 14, 471–483 (2015).

    Article  CAS  Google Scholar 

  92. Bootman, M. D. & Bultynck, G. Fundamentals of cellular calcium signaling: a primer. Cold Spring Harb. Perspect. Biol. 12, a038802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Berridge, M. J. Calcium signalling remodelling and disease. Biochem. Soc. Trans. 40, 297–309 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Roberts-Thomson, S. J., Chalmers, S. B. & Monteith, G. R. The calcium-signaling toolkit in cancer: remodeling and targeting. Cold Spring Harb. Perspect. Biol. 11, a035204 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tajada, S. & Villalobos, C. Calcium permeable channels in cancer hallmarks. Front. Pharmacol. 11, 968 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pierro, C., Cook, S. J., Foets, T. C. F., Bootman, M. D. & Roderick, H. L. Oncogenic K-Ras suppresses IP3-dependent Ca2+ release through remodelling of the isoform composition of IP3Rs and ER luminal Ca2+ levels in colorectal cancer cell lines. J. Cell Sci. 127, 1607–1619 (2014).

    CAS  PubMed  Google Scholar 

  99. Graier, W. F. & Malli, R. Mitochondrial calcium: a crucial hub for cancer cell metabolism? Transl. Cancer Res. 6(Suppl. 7), S1124–S1127 (2017).

    Article  Google Scholar 

  100. Roderick, H. L. & Cook, S. J. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat. Rev. Cancer 8, 361–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Lavik, A. R. et al. A non-canonical role for pyruvate kinase M2 as a functional modulator of Ca2+ signalling through IP3 receptors. Biochim. Biophys. Acta Mol. Cell Res. 1869, 119206 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Szado, T. et al. Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc. Natl Acad. Sci. USA 105, 2427–2432 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Distelhorst, C. W. & Bootman, M. D. Creating a new cancer therapeutic agent by targeting the interaction between Bcl-2 and IP3 receptors. Cold Spring Harb. Perspect. Biol. 11, a035196 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cárdenas, C. et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270–283 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Loncke, J. et al. Balancing ER-mitochondrial Ca2+ fluxes in health and disease. Trends Cell Biol. 31, 598–612 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Perocchi, F. et al. MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467, 291–296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. De Stefani, D., Raffaello, A., Teardo, E., Szabò, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Baughman, J. M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chakraborty, P. K. et al. MICU1 drives glycolysis and chemoresistance in ovarian cancer. Nat. Commun. 8, 14634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Marchi, S. et al. Mitochondrial calcium uniporter complex modulation in cancerogenesis. Cell Cycle 18, 1068–1083 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Marchi, S. et al. Akt-mediated phosphorylation of MICU1 regulates mitochondrial Ca2+ levels and tumor growth. EMBO J. 38, e99435 (2019).

    Article  PubMed  Google Scholar 

  112. Ardura, J. A., Álvarez-Carrión, L., Gutiérrez-Rojas, I. & Alonso, V. Role of calcium signaling in prostate cancer progression: effects on cancer hallmarks and bone metastatic mechanisms. Cancers 12, 1071 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gu, X. & Spitzer, N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Bootman, M. D., Lipp, P. & Berridge, M. J. The organisation and functions of local Ca2+ signals. J. Cell Sci. 114, 2213–2222 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Collins, T. J., Lipp, P., Berridge, M. J. & Bootman, M. D. Mitochondrial Ca2+ uptake depends on the spatial and temporal profile of cytosolic Ca2+ signals. J. Biol. Chem. 276, 26411–26420 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Higazi, D. R. et al. Endothelin-1-stimulated InsP3-induced Ca2+ release is a nexus for hypertrophic signaling in cardiac myocytes. Mol. Cell 33, 472–482 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Marchetti, C. Calcium signaling in prostate cancer cells of increasing malignancy. Biomol. Concepts 13, 156–163 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Dubois, C. et al. Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell 26, 19–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Breitwieser, G. E. Extracellular calcium as an integrator of tissue function. Int. J. Biochem. Cell Biol. 40, 1467–1480 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ewence, A. E. et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ. Res. 103, e28–e34 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Krasil’nikova, I. et al. Insulin protects cortical neurons against glutamate excitotoxicity. Front. Neurosci. 13, 1027 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Atakpa-Adaji, P., Thillaiappan, N. B. & Taylor, C. W. IP3 receptors and their intimate liaisons. Curr. Opin. Physiol. 17, 9–16 (2020).

    Article  Google Scholar 

  123. Kerkhofs, M. et al. Alterations in Ca2+ signalling via ER-mitochondria contact site remodelling in cancer. Adv. Exp. Med. Biol. 997, 225–254 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Kerkhofs, M. et al. Emerging molecular mechanisms in chemotherapy: Ca2+ signaling at the mitochondria-associated endoplasmic reticulum membranes. Cell Death Dis. 9, 334 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hanson, C. J., Bootman, M. D. & Roderick, H. L. Cell signalling: IP3 receptors channel calcium into cell death. Curr. Biol. 14, R933–R935 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Sun, Y.-H., Gao, X., Tang, Y.-J., Xu, C.-L. & Wang, L.-H. Androgens induce increases in intracellular calcium via a G protein-coupled receptor in LNCaP prostate cancer cells. J. Androl. 27, 671–678 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Prole, D. L. & Taylor, C. W. Structure and function of IP3 receptors. Cold Spring Harb. Perspect. Biol. 11, a035063 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chang, M.-J. et al. Feedback regulation mediated by Bcl-2 and DARPP-32 regulates inositol 1,4,5-trisphosphate receptor phosphorylation and promotes cell survival. Proc. Natl Acad. Sci. USA 111, 1186–1191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bootman, M. D. Calcium signaling. Cold Spring Harb. Perspect. Biol. 4, a011171 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Johnson, C. K. Calmodulin, conformational states, and calcium signaling. A single-molecule perspective. Biochemistry 45, 14233–14246 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Dewenter, M., von der Lieth, A., Katus, H. A. & Backs, J. Calcium signaling and transcriptional regulation in cardiomyocytes. Circ. Res. 121, 1000–1020 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Puri, B. K. Calcium signaling and gene expression. Adv. Exp. Med. Biol. 1131, 537–545 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Vangeel, L. & Voets, T. Transient receptor potential channels and calcium signaling. Cold Spring Harb. Perspect. Biol. 11, a035048 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ishimaru, Y. & Matsunami, H. Transient receptor potential (TRP) channels and taste sensation. J. Dent. Res. 88, 212–218 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang, D. & Kim, J. Emerging role of transient receptor potential (TRP) channels in cancer progression. BMB Rep. 53, 125–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Catterall, W. A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3, a003947 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Prakriya, M. Store-operated Orai channels: structure and function. Curr. Top. Membr. 71, 1–32 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lewis, R. S. The molecular choreography of a store-operated calcium channel. Nature 446, 284–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Yeung, P. S.-W., Yamashita, M. & Prakriya, M. Molecular basis of allosteric Orai1 channel activation by STIM1. J. Physiol. 598, 1707–1723 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Prakriya, M. & Lewis, R. S. Store-operated calcium channels. Physiol. Rev. 95, 1383–1436 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Huang, Y. & Putney, J. W. J. Relationship between intracellular calcium store depletion and calcium release-activated calcium current in a mast cell line (RBL-1). J. Biol. Chem. 273, 19554–19559 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Bennett, D. L., Bootman, M. D., Berridge, M. J. & Cheek, T. R. Ca2+ entry into PC12 cells initiated by ryanodine receptors or inositol 1,4,5-trisphosphate receptors. Biochem. J. 329, 349–357 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Carafoli, E. & Krebs, J. Why calcium? How calcium became the best communicator. J. Biol. Chem. 291, 20849–20857 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Brini, M. & Carafoli, E. The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb. Perspect. Biol. 3, a004168 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Shackelford, R. E., Kaufmann, W. K. & Paules, R. S. Cell cycle control, checkpoint mechanisms, and genotoxic stress. Environ. Health Perspect. 107, 5–24 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Humeau, J. et al. Calcium signaling and cell cycle: progression or death. Cell Calcium 70, 3–15 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Rao, A. Signaling to gene expression: calcium, calcineurin and NFAT. Nat. Immunol. 10, 3–5 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Patergnani, S. et al. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int. J. Mol. Sci. 21, 8323 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Déliot, N. & Constantin, B. Plasma membrane calcium channels in cancer: alterations and consequences for cell proliferation and migration. Biochim. Biophys. Acta 1848, 2512–2522 (2015).

    Article  PubMed  Google Scholar 

  151. Tsai, F.-C., Kuo, G.-H., Chang, S.-W. & Tsai, P.-J. Ca2+ signaling in cytoskeletal reorganization, cell migration, and cancer metastasis. Biomed. Res. Int. 2015, 409245 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. White, C. The regulation of tumor cell invasion and metastasis by endoplasmic reticulum-to-mitochondrial Ca2+ transfer. Front. Oncol. 7, 171 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Savitskaya, M. A. & Onishchenko, G. E. Mechanisms of apoptosis. Biochemistry 80, 1393–1405 (2015).

    CAS  PubMed  Google Scholar 

  154. Bonora, M. & Pinton, P. The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front. Oncol. 4, 302 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bonora, M., Giorgi, C. & Pinton, P. Molecular mechanisms and consequences of mitochondrial permeability transition. Nat. Rev. Mol. Cell Biol. 23, 266–285 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Morris, J. L., Gillet, G., Prudent, J. & Popgeorgiev, N. Bcl-2 family of proteins in the control of mitochondrial calcium signalling: an old chap with new roles. Int. J. Mol. Sci. 22, 3730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chen, R. et al. Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J. Cell Biol. 166, 193–203 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sukumaran, P. et al. Calcium signaling regulates autophagy and apoptosis. Cells 10, 2125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kuchay, S. et al. PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth. Nature 546, 554–558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hamilton, J. P. Epigenetics: principles and practice. Dig. Dis. 29, 130–135 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Park, J. W. & Han, J.-W. Targeting epigenetics for cancer therapy. Arch. Pharm. Res. 42, 159–170 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Arechederra, M. et al. Hypermethylation of gene body CpG islands predicts high dosage of functional oncogenes in liver cancer. Nat. Commun. 9, 3164 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Wang, X.-X. et al. Large-scale DNA methylation expression analysis across 12 solid cancers reveals hypermethylation in the calcium-signaling pathway. Oncotarget 8, 11868–11876 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Gregório, C. et al. Calcium signaling alterations caused by epigenetic mechanisms in pancreatic cancer: from early markers to prognostic impact. Cancers 12, 1735 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Geybels, M. S. et al. Epigenomic profiling of prostate cancer identifies differentially methylated genes in TMPRSS2:ERG fusion-positive versus fusion-negative tumors. Clin. Epigenetics 7, 128 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Börno, S. T. et al. Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2-dependent mechanism with miR-26a hypermethylation. Cancer Discov. 2, 1024–1035 (2012).

    Article  PubMed  Google Scholar 

  167. Sato, N., Fukushima, N., Matsubayashi, H. & Goggins, M. Identification of maspin and S100P as novel hypomethylation targets in pancreatic cancer using global gene expression profiling. Oncogene 23, 1531–1538 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Wang, Q. et al. Hypomethylation of WNT5A, CRIP1 and S100P in prostate cancer. Oncogene 26, 6560–6565 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Ramachandran, K., Speer, C., Nathanson, L., Claros, M. & Singal, R. Role of DNA methylation in cabazitaxel resistance in prostate cancer. Anticancer. Res. 36, 161–168 (2016).

    CAS  PubMed  Google Scholar 

  170. Marchi, S. et al. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr. Biol. 23, 58–63 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Peitzsch, C. et al. An epigenetic reprogramming strategy to resensitize radioresistant prostate cancer cells. Cancer Res. 76, 2637–2651 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Karanikolas, B. D. W., Figueiredo, M. L. & Wu, L. Comprehensive evaluation of the role of EZH2 in the growth, invasion, and aggression of a panel of prostate cancer cell lines. Prostate 70, 675–688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Park, S. H. et al. Going beyond polycomb: EZH2 functions in prostate cancer. Oncogene 40, 5788–5798 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fong, K.-W. et al. Polycomb-mediated disruption of an androgen receptor feedback loop drives castration-resistant prostate cancer. Cancer Res. 77, 412–422 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Shan, J. et al. Targeting Wnt/EZH2/microRNA-708 signaling pathway inhibits neuroendocrine differentiation in prostate cancer. Cell Death Discov. 5, 139 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Yu, Y.-L. et al. EZH2 regulates neuronal differentiation of mesenchymal stem cells through PIP5K1C-dependent calcium signaling. J. Biol. Chem. 286, 9657–9667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wu, X., Zagranichnaya, T. K., Gurda, G. T., Eves, E. M. & Villereal, M. L. A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells. J. Biol. Chem. 279, 43392–43402 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Banerjee, S. & Hasan, G. The InsP3 receptor: its role in neuronal physiology and neurodegeneration. Bioessays 27, 1035–1047 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Ryu, S. et al. Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell 23, 63–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Yang, J. et al. Metformin induces ER stress-dependent apoptosis through miR-708-5p/NNAT pathway in prostate cancer. Oncogenesis 4, e158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhou, X. et al. Targeting EZH2 regulates tumor growth and apoptosis through modulating mitochondria dependent cell-death pathway in HNSCC. Oncotarget 6, 33720–33732 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Crea, F. et al. Pharmacologic disruption of polycomb repressive complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol. Cancer 10, 40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Skryma, R. et al. Store depletion and store-operated Ca2+ current in human prostate cancer LNCaP cells: involvement in apoptosis. J. Physiol. 527, 71–83 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Vashisht, A., Trebak, M. & Motiani, R. K. STIM and Orai proteins as novel targets for cancer therapy. A review in the theme: cell and molecular processes in cancer metastasis. Am. J. Physiol. Cell Physiol. 309, C457–C469 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Flourakis, M. et al. Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells. Cell Death Dis. 1, e75 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Holzmann, C. et al. ICRAC controls the rapid androgen response in human primary prostate epithelial cells and is altered in prostate cancer. Oncotarget 4, 2096–2107 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Mignen, O. & Shuttleworth, T. J. IARC, a novel arachidonate-regulated, noncapacitative Ca2+ entry channel. J. Biol. Chem. 275, 9114–9119 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Tanwar, J., Arora, S. & Motiani, R. K. Orai3: oncochannel with therapeutic potential. Cell Calcium 90, 102247 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Legrand, G. et al. Ca2+ pools and cell growth. Evidence for sarcoendoplasmic Ca2+-ATPases 2B involvement in human prostate cancer cell growth control. J. Biol. Chem. 276, 47608–47614 (2001).

    Article  CAS  PubMed  Google Scholar 

  191. Sun, Y. et al. Cholesterol-induced activation of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells. Biochim. Biophys. Acta 1843, 1839–1850 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Luo, Y. et al. Carvacrol alleviates prostate cancer cell proliferation, migration, and invasion through regulation of PI3K/Akt and MAPK signaling pathways. Oxid. Med. Cell. Longev. 2016, 1469693 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Zhang, W. & Liu, H. T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12, 9–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  194. Chuderland, D. & Seger, R. Calcium regulates ERK signaling by modulating its protein-protein interactions. Commun. Integr. Biol. 1, 4–5 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang, Y. et al. The role of TRPC6 in HGF-induced cell proliferation of human prostate cancer DU145 and PC3 cells. Asian J. Androl. 12, 841–852 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Holzmann, C. et al. Transient receptor potential melastatin 4 channel contributes to migration of androgen-insensitive prostate cancer cells. Oncotarget 6, 41783–41793 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Berg, K. D. et al. TRPM4 protein expression in prostate cancer: a novel tissue biomarker associated with risk of biochemical recurrence following radical prostatectomy. Virchows Arch. 468, 345–355 (2016).

    Article  CAS  PubMed  Google Scholar 

  198. Xue, G. & Hemmings, B. A. PKB/Akt-dependent regulation of cell motility. J. Natl Cancer Inst. 105, 393–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Sagredo, A. I. et al. TRPM4 regulates Akt/GSK3-β activity and enhances β-catenin signaling and cell proliferation in prostate cancer cells. Mol. Oncol. 12, 151–165 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Major, M. B. et al. New regulators of Wnt/β-catenin signaling revealed by integrative molecular screening. Sci. Signal. 1, ra12 (2008).

    Article  PubMed  Google Scholar 

  201. Launay, P. et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109, 397–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  202. Borgström, A., Peinelt, C. & Stokłosa, P. TRPM4 in cancer — a new potential drug target. Biomolecules 11, 229 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Zeng, X. et al. Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation. Prostate Cancer Prostatic Dis. 13, 195–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  204. Zhang, L. & Barritt, G. J. Evidence that TRPM8 is an androgen-dependent Ca2+ channel required for the survival of prostate cancer cells. Cancer Res. 64, 8365–8373 (2004).

    Article  CAS  PubMed  Google Scholar 

  205. Liu, T. et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol. Lett. 11, 182–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  206. Lehen’kyi, V., Flourakis, M., Skryma, R. & Prevarskaya, N. TRPV6 channel controls prostate cancer cell proliferation via Ca2+/NFAT-dependent pathways. Oncogene 26, 7380–7385 (2007).

    Article  PubMed  Google Scholar 

  207. Welch, D. R. & Hurst, D. R. Defining the hallmarks of metastasis. Cancer Res. 79, 3011–3027 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhou, Y. et al. Suppression of STIM1 inhibits the migration and invasion of human prostate cancer cells and is associated with PI3K/Akt signaling inactivation. Oncol. Rep. 38, 2629–2636 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Borgström, A. et al. Small molecular inhibitors block TRPM4 currents in prostate cancer cells, with limited impact on cancer hallmark functions. J. Mol. Biol. 433, 166665 (2021).

    Article  PubMed  Google Scholar 

  210. Sagredo, A. I. et al. TRPM4 channel is involved in regulating epithelial to mesenchymal transition, migration, and invasion of prostate cancer cell lines. J. Cell. Physiol. 234, 2037–2050 (2019).

    Article  CAS  PubMed  Google Scholar 

  211. Chen, L. et al. Downregulation of TRPM7 suppressed migration and invasion by regulating epithelial-mesenchymal transition in prostate cancer cells. Med. Oncol. 34, 127 (2017).

    Article  PubMed  Google Scholar 

  212. Fang, L. et al. TRPM7 channel regulates PDGF-BB-induced proliferation of hepatic stellate cells via PI3K and ERK pathways. Toxicol. Appl. Pharmacol. 272, 713–725 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Liu, X., Gan, L. & Zhang, J. miR-543 inhibits cervical cancer growth and metastasis by targeting TRPM7. Chem. Biol. Interact. 302, 83–92 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Qiao, W. et al. Effects of salivary Mg on head and neck carcinoma via TRPM7. J. Dent. Res. 98, 304–312 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Sun, Y., Schaar, A., Sukumaran, P., Dhasarathy, A. & Singh, B. B. TGFβ-induced epithelial-to-mesenchymal transition in prostate cancer cells is mediated via TRPM7 expression. Mol. Carcinog. 57, 752–761 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Sahni, J. & Scharenberg, A. M. TRPM7 ion channels are required for sustained phosphoinositide 3-kinase signaling in lymphocytes. Cell Metab. 8, 84–93 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Zou, Z.-G., Rios, F. J., Montezano, A. C. & Touyz, R. M. TRPM7, magnesium, and signaling. Int. J. Mol. Sci. 20, 1877 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Sun, Y. et al. Increase in serum Ca2+/Mg2+ ratio promotes proliferation of prostate cancer cells by activating TRPM7 channels. J. Biol. Chem. 288, 255–263 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. Dai, Q. et al. Blood magnesium, and the interaction with calcium, on the risk of high-grade prostate cancer. PLoS ONE 6, e18237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Yang, Z.-H., Wang, X.-H., Wang, H.-P. & Hu, L.-Q. Effects of TRPM8 on the proliferation and motility of prostate cancer PC-3 cells. Asian J. Androl. 11, 157–165 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhu, G. et al. Effects of TRPM8 on the proliferation and angiogenesis of prostate cancer PC-3 cells in vivo. Oncol. Lett. 2, 1213–1217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wang, Y. et al. Menthol inhibits the proliferation and motility of prostate cancer DU145 cells. Pathol. Oncol. Res. 18, 903–910 (2012).

    Article  CAS  PubMed  Google Scholar 

  223. Schmidt, U. et al. Quantitative multi-gene expression profiling of primary prostate cancer. Prostate 66, 1521–1534 (2006).

    Article  CAS  PubMed  Google Scholar 

  224. Bai, V. U. et al. Androgen regulated TRPM8 expression: a potential mRNA marker for metastatic prostate cancer detection in body fluids. Int. J. Oncol. 36, 443–450 (2010).

    CAS  PubMed  Google Scholar 

  225. Valero, M. L., Mello de Queiroz, F., Stühmer, W., Viana, F. & Pardo, L. A. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells. PLoS ONE 7, e51825 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Thebault, S. et al. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells. J. Biol. Chem. 280, 39423–39435 (2005).

    Article  CAS  PubMed  Google Scholar 

  227. Grolez, G. P. et al. TRPM8 as an anti-tumoral target in prostate cancer growth and metastasis dissemination. Int. J. Mol. Sci. 23, 6672 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Grolez, G. P. et al. Encapsulation of a TRPM8 agonist, WS12, in lipid nanocapsules potentiates PC3 prostate cancer cell migration inhibition through channel activation. Sci. Rep. 9, 7926 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Di Donato, M. et al. Therapeutic potential of TRPM8 antagonists in prostate cancer. Sci. Rep. 11, 23232 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Asuthkar, S., Velpula, K. K., Elustondo, P. A., Demirkhanyan, L. & Zakharian, E. TRPM8 channel as a novel molecular target in androgen-regulated prostate cancer cells. Oncotarget 6, 17221–17236 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Asuthkar, S. et al. The TRPM8 protein is a testosterone receptor: II. Functional evidence for an ionotropic effect of testosterone on TRPM8. J. Biol. Chem. 290, 2670–2688 (2015).

    Article  CAS  PubMed  Google Scholar 

  232. Bidaux, G. et al. Evidence for specific TRPM8 expression in human prostate secretory epithelial cells: functional androgen receptor requirement. Endocr. Relat. Cancer 12, 367–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  233. Monet, M. et al. Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochim. Biophys. Acta 1793, 528–539 (2009).

    Article  CAS  PubMed  Google Scholar 

  234. Monet, M. et al. Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res. 70, 1225–1235 (2010).

    Article  CAS  PubMed  Google Scholar 

  235. Kim, D. Y., Kim, S. H. & Yang, E. K. RNA interference mediated suppression of TRPV6 inhibits the progression of prostate cancer in vitro by modulating cathepsin B and MMP9 expression. Investig. Clin. Urol. 62, 447–454 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  236. O’Reilly, D. et al. CaV1.3 enhanced store operated calcium promotes resistance to androgen deprivation in prostate cancer. Cell Calcium 103, 102554 (2022).

    Article  PubMed  Google Scholar 

  237. Weaver, E. M. et al. Regulation of T-type calcium channel expression by sodium butyrate in prostate cancer cells. Eur. J. Pharmacol. 749, 20–31 (2015).

    Article  CAS  PubMed  Google Scholar 

  238. Prevarskaya, N., Zhang, L. & Barritt, G. TRP channels in cancer. Biochim. Biophys. Acta 1772, 937–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  239. Fukami, K. et al. Functional upregulation of the H2S/Cav3.2 channel pathway accelerates secretory function in neuroendocrine-differentiated human prostate cancer cells. Biochem. Pharmacol. 97, 300–309 (2015).

    Article  CAS  PubMed  Google Scholar 

  240. Valkenburg, K. C., de Groot, A. E. & Pienta, K. J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 15, 366–381 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Schwörer, S., Vardhana, S. A. & Thompson, C. B. Cancer metabolism drives a stromal regenerative response. Cell Metab. 29, 576–591 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Hoyt, K. et al. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark. 4, 213–225 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Hope, J. M., Greenlee, J. D. & King, M. R. Mechanosensitive ion channels: TRPV4 and P2X7 in disseminating cancer cells. Cancer J. 24, 84–92 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Han, Y. et al. Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of the Akt/mTOR pathway and acceleration of cell cycle. Int. J. Oncol. 55, 629–644 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Slater, M., Danieletto, S. & Barden, J. A. Expression of the apoptotic calcium channel P2X7 in the glandular epithelium. J. Mol. Histol. 36, 159–165 (2005).

    Article  CAS  PubMed  Google Scholar 

  246. Roger, S. et al. Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. Biochim. Biophys. Acta 1848, 2584–2602 (2015).

    Article  CAS  PubMed  Google Scholar 

  247. De Felice, D. & Alaimo, A. Mechanosensitive piezo channels in cancer: focus on altered calcium signaling in cancer cells and in tumor progression. Cancers 12, 1780 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Basson, M. D., Zeng, B., Downey, C., Sirivelu, M. P. & Tepe, J. J. Increased extracellular pressure stimulates tumor proliferation by a mechanosensitive calcium channel and PKC-β. Mol. Oncol. 9, 513–526 (2015).

    Article  CAS  PubMed  Google Scholar 

  249. Ashton, J. & Bristow, R. Bad neighbours: hypoxia and genomic instability in prostate cancer. Br. J. Radiol. 93, 20200087 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Figiel, S. et al. Functional organotypic cultures of prostate tissues: a relevant preclinical model that preserves hypoxia sensitivity and calcium signaling. Am. J. Pathol. 189, 1268–1275 (2019).

    Article  CAS  PubMed  Google Scholar 

  251. Bery, F. et al. Hypoxia promotes prostate cancer aggressiveness by upregulating EMT-activator Zeb1 and SK3 channel expression. Int. J. Mol. Sci. 21, 4786 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. O’Reilly, D. & Buchanan, P. J. Hypoxic signaling is modulated by calcium channel, CaV1.3, in androgen-resistant prostate cancer. Bioelectricity 4, 81–91 (2022).

    Article  Google Scholar 

  253. Chen, R. et al. Cav1.3 channel α1D protein is overexpressed and modulates androgen receptor transactivation in prostate cancers. Urol. Oncol. 32, 524–536 (2014).

    Article  CAS  PubMed  Google Scholar 

  254. Yu, S. et al. Ion channel TRPM8 promotes hypoxic growth of prostate cancer cells via an O2 -independent and RACK1-mediated mechanism of HIF-1α stabilization. J. Pathol. 234, 514–525 (2014).

    Article  CAS  PubMed  Google Scholar 

  255. Yang, F. et al. Suppression of TRPM7 inhibited hypoxia-induced migration and invasion of androgen-independent prostate cancer cells by enhancing RACK1-mediated degradation of HIF-1α. Oxid. Med. Cell. Longev. 2020, 6724810 (2020).

    PubMed  PubMed Central  Google Scholar 

  256. Li, F., Abuarab, N. & Sivaprasadarao, A. Reciprocal regulation of actin cytoskeleton remodelling and cell migration by Ca2+ and Zn2+: role of TRPM2 channels. J. Cell Sci. 129, 2016–2029 (2016).

    CAS  PubMed  Google Scholar 

  257. Holzmann, C. et al. Differential redox regulation of Ca2+ signaling and viability in normal and malignant prostate cells. Biophys. J. 109, 1410–1419 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Takahashi, N. et al. Cancer cells Co-opt the neuronal redox-sensing channel TRPA1 to promote oxidative-stress tolerance. Cancer Cell 33, 985–1003.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Simon, F. et al. Hydrogen peroxide removes TRPM4 current desensitization conferring increased vulnerability to necrotic cell death. J. Biol. Chem. 285, 37150–37158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Liao, J., Schneider, A., Datta, N. S. & McCauley, L. K. Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Res. 66, 9065–9073 (2006).

    Article  CAS  PubMed  Google Scholar 

  261. Gorkhali, R. et al. Extracellular calcium alters calcium-sensing receptor network integrating intracellular calcium-signaling and related key pathway. Sci. Rep. 11, 20576 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Denmeade, S. R. et al. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy. Sci. Transl. Med. 4, 140ra86 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Isaacs, J. T., Brennen, W. N., Christensen, S. B. & Denmeade, S. R. Mipsagargin: the beginning — not the end — of thapsigargin prodrug-based cancer therapeutics. Molecules 26, 7469 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Jaskulska, A., Janecka, A. E. & Gach-Janczak, K. Thapsigargin — from traditional medicine to anticancer drug. Int. J. Mol. Sci. 22, 4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Distelhorst, C. W. & McCormick, T. S. Bcl-2 acts subsequent to and independent of Ca2+ fluxes to inhibit apoptosis in thapsigargin- and glucocorticoid-treated mouse lymphoma cells. Cell Calcium 19, 473–483 (1996).

    Article  CAS  PubMed  Google Scholar 

  266. Chaudhary, K. S., Abel, P. D., Stamp, G. W. & Lalani, E. Differential expression of cell death regulators in response to thapsigargin and adriamycin in Bcl-2 transfected DU145 prostatic cancer cells. J. Pathol. 193, 522–529 (2001).

    Article  CAS  PubMed  Google Scholar 

  267. Mahalingam, D. et al. Mipsagargin, a novel thapsigargin-based PSMA-activated prodrug: results of a first-in-man phase I clinical trial in patients with refractory, advanced or metastatic solid tumours. Br. J. Cancer 114, 986–994 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Mahalingam, D. et al. A phase II, multicenter, single-arm study of mipsagargin (G-202) as a second-line therapy following sorafenib for adult patients with progressive advanced hepatocellular carcinoma. Cancers 11, 833 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02067156 (2017).

  270. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02607553 (2017).

  271. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02381236 (2017).

  272. Silvestri, R. et al. T-type calcium channels drive the proliferation of androgen-receptor negative prostate cancer cells. Prostate 79, 1580–1586 (2019).

    CAS  PubMed  Google Scholar 

  273. Hu, S. et al. CAV3.1 knockdown suppresses cell proliferation, migration and invasion of prostate cancer cells by inhibiting AKT. Cancer Manag. Res. 10, 4603–4614 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Holdhoff, M. et al. Timed sequential therapy of the selective T-type calcium channel blocker mibefradil and temozolomide in patients with recurrent high-grade gliomas. Neuro. Oncol. 19, 845–852 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Bowen, C. V. et al. In vivo detection of human TRPV6-rich tumors with anti-cancer peptides derived from soricidin. PLoS ONE 8, e58866 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Fu, S. et al. First-in-human phase I study of SOR-C13, a TRPV6 calcium channel inhibitor, in patients with advanced solid tumors. Invest. N. Drugs 35, 324–333 (2017).

    Article  CAS  Google Scholar 

  277. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03784677 (2022).

  278. Izumi, K. et al. Tranilast inhibits hormone refractory prostate cancer cell proliferation and suppresses transforming growth factor β1-associated osteoblastic changes. Prostate 69, 1222–1234 (2009).

    Article  CAS  PubMed  Google Scholar 

  279. Sato, S. et al. Tranilast suppresses prostate cancer growth and osteoclast differentiation in vivo and in vitro. Prostate 70, 229–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  280. Izumi, K. et al. Preliminary results of tranilast treatment for patients with advanced castration-resistant prostate cancer. Anticancer. Res. 30, 3077–3081 (2010).

    PubMed  Google Scholar 

  281. Buijs, J. T., Stayrook, K. R. & Guise, T. A. The role of TGF-β in bone metastasis: novel therapeutic perspectives. Bonekey Rep. 1, 96 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Darakhshan, S. & Pour, A. B. Tranilast: a review of its therapeutic applications. Pharmacol. Res. 91, 15–28 (2015).

    Article  CAS  PubMed  Google Scholar 

  283. Ishii, T. et al. TRPV2 channel inhibitors attenuate fibroblast differentiation and contraction mediated by keratinocyte-derived TGF-β1 in an in vitro wound healing model of rats. J. Dermatol. Sci. 90, 332–342 (2018).

    Article  CAS  PubMed  Google Scholar 

  284. Shiozaki, A. et al. Clinical safety and efficacy of neoadjuvant combination chemotherapy of tranilast in advanced esophageal squamous cell carcinoma: phase I/II study (TNAC). Medicine 99, e23633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    Article  CAS  PubMed  Google Scholar 

  286. Petrylak, D. P. et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N. Engl. J. Med. 351, 1513–1520 (2004).

    Article  CAS  PubMed  Google Scholar 

  287. Kappel, S. et al. Store-operated Ca2+ entry as a prostate cancer biomarker — a riddle with perspectives. Curr. Mol. Biol. Rep. 3, 208–217 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Hupe, D. J. et al. The inhibition of receptor-mediated and voltage-dependent calcium entry by the antiproliferative L-651,582. J. Biol. Chem. 266, 10136–10142 (1991).

    Article  CAS  PubMed  Google Scholar 

  289. Kohn, E. C. et al. Structure-function analysis of signal and growth inhibition by carboxyamido-triazole, CAI. Cancer Res. 54, 935–942 (1994).

    CAS  PubMed  Google Scholar 

  290. Sjaastad, M. D., Lewis, R. S. & Nelson, W. J. Mechanisms of integrin-mediated calcium signaling in MDCK cells: regulation of adhesion by IP3- and store-independent calcium influx. Mol. Biol. Cell 7, 1025–1041 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Wasilenko, W. J. et al. Effects of the calcium influx inhibitor carboxyamido-triazole on the proliferation and invasiveness of human prostate tumor cell lines. Int. J. Cancer 68, 259–264 (1996).

    Article  CAS  PubMed  Google Scholar 

  292. Kohn, E. C. et al. Clinical investigation of a cytostatic calcium influx inhibitor in patients with refractory cancers. Cancer Res. 56, 569–573 (1996).

    CAS  PubMed  Google Scholar 

  293. Kohn, E. C. et al. A phase I trial of carboxyamido-triazole and paclitaxel for relapsed solid tumors: potential efficacy of the combination and demonstration of pharmacokinetic interaction. Clin. Cancer Res. 7, 1600–1609 (2001).

    CAS  PubMed  Google Scholar 

  294. Azad, N. et al. A phase I study of paclitaxel and continuous daily CAI in patients with refractory solid tumors. Cancer Biol. Ther. 8, 1800–1805 (2009).

    Article  CAS  PubMed  Google Scholar 

  295. Bauer, K. S. et al. A pharmacokinetically guided phase II study of carboxyamido-triazole in androgen-independent prostate cancer. Clin. Cancer Res. 5, 2324–2329 (1999).

    CAS  PubMed  Google Scholar 

  296. Liang, X., Zhang, N., Pan, H., Xie, J. & Han, W. Development of store-operated calcium entry-targeted compounds in cancer. Front. Pharmacol. 12, 688244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Duan, R., Du, W. & Guo, W. EZH2: a novel target for cancer treatment. J. Hematol. Oncol. 13, 104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Straining, R. & Eighmy, W. Tazemetostat: EZH2 inhibitor. J. Adv. Pract. Oncol. 13, 158–163 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Italiano, A. et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 19, 649–659 (2018).

    Article  CAS  PubMed  Google Scholar 

  300. Gounder, M. et al. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study. Lancet Oncol. 21, 1423–1432 (2020).

    Article  CAS  PubMed  Google Scholar 

  301. Munakata, W. et al. Phase 1 study of tazemetostat in Japanese patients with relapsed or refractory B-cell lymphoma. Cancer Sci. 112, 1123–1131 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Morschhauser, F. et al. Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol. 21, 1433–1442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04846478 (2022).

  304. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04179864 (2022).

  305. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02395601 (2022).

  306. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03525795 (2022).

  307. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03480646 (2021).

  308. Yap, T. A. et al. Phase I study of the novel enhancer of Zeste homolog 2 (EZH2) inhibitor GSK2816126 in patients with advanced hematologic and solid tumors. Clin. Cancer Res. 25, 7331–7339 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Shankar, E. et al. Dual targeting of EZH2 and androgen receptor as a novel therapy for castration-resistant prostate cancer. Toxicol. Appl. Pharmacol. 404, 115200 (2020).

    Article  CAS  PubMed  Google Scholar 

  310. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT03460977 (2023).

  311. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04276662 (2021).

  312. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03110354 (2021).

  313. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04102150 (2023).

  314. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02732275 (2023).

  315. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03879798 (2022).

  316. Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465–1469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Tektemur, A. et al. TRPM2 mediates disruption of autophagy machinery and correlates with the grade level in prostate cancer. J. Cancer Res. Clin. Oncol. 145, 1297–1311 (2019).

    Article  CAS  PubMed  Google Scholar 

  318. Ouyang, X. S., Wang, X., Lee, D. T., Tsao, S. W. & Wong, Y. C. Up-regulation of TRPM-2, MMP-7 and ID-1 during sex hormone-induced prostate carcinogenesis in the Noble rat. Carcinogenesis 22, 965–973 (2001).

    Article  CAS  PubMed  Google Scholar 

  319. Di Sarno, V. et al. New TRPM8 blockers exert anticancer activity over castration-resistant prostate cancer models. Eur. J. Med. Chem. 238, 114435 (2022).

    Article  PubMed  Google Scholar 

  320. Doan, N. T. Q. et al. Targeting thapsigargin towards tumors. Steroids 97, 2–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  321. Sehgal, P. et al. Inhibition of the sarco/endoplasmic reticulum (ER) Ca2+-ATPase by thapsigargin analogs induces cell death via ER Ca2+ depletion and the unfolded protein response. J. Biol. Chem. 292, 19656–19673 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Lindner, P., Christensen, S. B., Nissen, P., Møller, J. V. & Engedal, N. Cell death induced by the ER stressor thapsigargin involves death receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded protein response components. Cell Commun. Signal. 18, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Sallan, M. C. et al. T-type Ca2+ channels: T for targetable. Cancer Res. 78, 603–609 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.S., V.N. and P.G. researched data for the article. R.S., V.N., F.C. and M.D.B. contributed substantially to discussion of the content. All authors wrote the article. F.C. and M.D.B. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Martin D. Bootman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Paolo Pinton, Paul Buchanan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvestri, R., Nicolì, V., Gangadharannambiar, P. et al. Calcium signalling pathways in prostate cancer initiation and progression. Nat Rev Urol 20, 524–543 (2023). https://doi.org/10.1038/s41585-023-00738-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00738-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing