Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The endoplasmic reticulum stress response in prostate cancer

Abstract

In order to proliferate in unfavourable conditions, cancer cells can take advantage of the naturally occurring endoplasmic reticulum-associated unfolded protein response (UPR) via three highly conserved signalling arms: IRE1α, PERK and ATF6. All three arms of the UPR have key roles in every step of tumour progression: from cancer initiation to tumour growth, invasion, metastasis and resistance to therapy. At present, no cure for metastatic prostate cancer exists, as targeting the androgen receptor eventually results in treatment resistance. New research has uncovered an important role for the UPR in prostate cancer tumorigenesis and crosstalk between the UPR and androgen receptor signalling pathways. With an improved understanding of the mechanisms by which cancer cells exploit the endoplasmic reticulum stress response, targetable points of vulnerability can be uncovered.

Key points

  • The endoplasmic reticulum (ER) detects cell stress and triggers the unfolded protein response (UPR) via three signalling arms: IRE1α, PERK and ATF6, leading to the transcription and translation of prosurvival response machinery.

  • Cancer cells hijack the UPR to thrive in unfavourable conditions, drive angiogenesis, evade immune surveillance, invade and migrate, initiate dormancy, grow from micrometastasis and develop resistance to treatment.

  • Prostate cancer cells overexpress chaperones (such as BiP) that translocate from the ER to the cell membrane to elicit cytoprotective effects in advanced prostate cancer.

  • Prostate cancer cells activate the IRE1α UPR arm via the androgen receptor (AR), and downstream XBP1s increases MYC expression, which ultimately leads to increased AR expression in a positive-feedback loop.

  • AR might downregulate PERK to decrease CHOP-mediated apoptosis, but in advanced prostate cancer, PERK signalling seems to be activated to avoid uncontrolled protein synthesis.

  • A number of molecules target ER homeostasis and show promising efficacy in vitro and in preclinical models of prostate cancer. Translational studies investigating these compounds will be required to bring them to clinical use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The three arms of the unfolded protein response.
Fig. 2: Targeting the PERK–eIF2α arm of the unfolded protein response.
Fig. 3: Manipulation of the mechanisms of the unfolded protein response in cancer.
Fig. 4: The unfolded protein response and androgen receptor signalling crosstalk in prostate cancer.

Similar content being viewed by others

References

  1. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 (2012).

    CAS  PubMed  Google Scholar 

  2. Ballar Kirmizibayrak, P., Erbaykent-Tepedelen, B., Gozen, O. & Erzurumlu, Y. Divergent modulation of proteostasis in prostate cancer. Adv. Exp. Med. Biol. 1233, 117–151 (2020).

    CAS  PubMed  Google Scholar 

  3. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    CAS  PubMed  Google Scholar 

  4. Hsu, S. K. et al. Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20102518 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    PubMed  Google Scholar 

  6. Schweizer, M. T. & Yu, E. Y. Persistent androgen receptor addiction in castration-resistant prostate cancer. J. Hematol. Oncol. 8, 128 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Nguyen, H. G. et al. Development of a stress response therapy targeting aggressive prostate cancer. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aar2036 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jin, Y. & Saatcioglu, F. Targeting the unfolded protein response in hormone-regulated cancers. Trends Cancer 6, 160–171 (2020).

    CAS  PubMed  Google Scholar 

  9. Schwarz, D. S. & Blower, M. D. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol. Life Sci. 73, 79–94 (2016).

    CAS  PubMed  Google Scholar 

  10. Fagone, P. & Jackowski, S. Membrane phospholipid synthesis and endoplasmic reticulum function. J. Lipid Res. 50 (Suppl.), S311–S316 (2009).

    PubMed  PubMed Central  Google Scholar 

  11. Hudson, D. A., Gannon, S. A. & Thorpe, C. Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radic. Biol. Med. 80, 171–182 (2015).

    CAS  PubMed  Google Scholar 

  12. Hwang, C., Sinskey, A. J. & Lodish, H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257, 1496–1502 (1992).

    CAS  PubMed  Google Scholar 

  13. Barlowe, C. K. & Miller, E. A. Secretory protein biogenesis and traffic in the early secretory pathway. Genetics 193, 383–410 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stephens, S. B. & Nicchitta, C. V. Divergent regulation of protein synthesis in the cytosol and endoplasmic reticulum compartments of mammalian cells. Mol. Biol. Cell 19, 623–632 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Braakman, I. & Hebert, D. N. Protein folding in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 5, a013201 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. Xu, C., Bailly-Maitre, B. & Reed, J. C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 115, 2656–2664 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sitia, R. & Braakman, I. Quality control in the endoplasmic reticulum protein factory. Nature 426, 891–894 (2003).

    CAS  PubMed  Google Scholar 

  18. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    CAS  PubMed  Google Scholar 

  19. Limia, C. M. et al. Emerging roles of the endoplasmic reticulum associated unfolded protein response in cancer cell migration and invasion. Cancers https://doi.org/10.3390/cancers11050631 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ellgaard, L. & Helenius, A. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4, 181–191 (2003).

    CAS  PubMed  Google Scholar 

  21. Lin, J. H., Walter, P. & Yen, T. S. Endoplasmic reticulum stress in disease pathogenesis. Annu. Rev. Pathol. 3, 399–425 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schonthal, A. H. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica 2012, 857516 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904 (2000).

    CAS  PubMed  Google Scholar 

  24. Gardner, B. M. & Walter, P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333, 1891–1894 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tam, A. B. et al. The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by distinct mechanisms. Dev. Cell 46, 327–343.e327 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Carrara, M., Prischi, F. & Ali, M. M. UPR signal activation by luminal sensor domains. Int. J. Mol. Sci. 14, 6454–6466 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tabas, I. & Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184–190 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cox, J. S., Shamu, C. E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197–1206 (1993).

    CAS  PubMed  Google Scholar 

  29. Adams, C. J., Kopp, M. C., Larburu, N., Nowak, P. R. & Ali, M. M. U. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front. Mol. Biosci. 6, 11 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Meusser, B., Hirsch, C., Jarosch, E. & Sommer, T. ERAD: the long road to destruction. Nat. Cell Biol. 7, 766–772 (2005).

    CAS  PubMed  Google Scholar 

  31. Maurel, M., Chevet, E., Tavernier, J. & Gerlo, S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem. Sci. 39, 245–254 (2014).

    CAS  PubMed  Google Scholar 

  32. Zhang, L., Chen, J. & Fu, H. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc. Natl Acad. Sci. USA 96, 8511–8515 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332 (2000).

    CAS  PubMed  Google Scholar 

  34. Proud, C. G. eIF2 and the control of cell physiology. Semin. Cell Dev. Biol. 16, 3–12 (2005).

    CAS  PubMed  Google Scholar 

  35. Wek, R. C., Jiang, H. Y. & Anthony, T. G. Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7–11 (2006).

    CAS  PubMed  Google Scholar 

  36. Palam, L. R., Baird, T. D. & Wek, R. C. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J. Biol. Chem. 286, 10939–10949 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 101, 11269–11274 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsuru, A., Imai, Y., Saito, M. & Kohno, K. Novel mechanism of enhancing IRE1alpha-XBP1 signalling via the PERK-ATF4 pathway. Sci. Rep. 6, 24217 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Iurlaro, R. & Munoz-Pinedo, C. Cell death induced by endoplasmic reticulum stress. FEBS J. 283, 2640–2652 (2016).

    CAS  PubMed  Google Scholar 

  40. Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Denoyelle, C. et al. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat. Cell Biol. 8, 1053–1063 (2006).

    CAS  PubMed  Google Scholar 

  42. Hart, L. S. et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Invest. 122, 4621–4634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hai, T. W., Liu, F., Coukos, W. J. & Green, M. R. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 3, 2083–2090 (1989).

    CAS  PubMed  Google Scholar 

  44. Shen, J., Chen, X., Hendershot, L. & Prywes, R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3, 99–111 (2002).

    CAS  PubMed  Google Scholar 

  45. Nadanaka, S., Okada, T., Yoshida, H. & Mori, K. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol. Cell Biol. 27, 1027–1043 (2007).

    CAS  PubMed  Google Scholar 

  46. Ni, M. & Lee, A. S. ER chaperones in mammalian development and human diseases. FEBS Lett. 581, 3641–3651 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Luo, B. & Lee, A. S. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene 32, 805–818 (2013).

    CAS  PubMed  Google Scholar 

  48. Krebs, J., Agellon, L. B. & Michalak, M. Ca2+ homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem. Biophys. Res. Commun. 460, 114–121 (2015).

    CAS  PubMed  Google Scholar 

  49. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    CAS  PubMed  Google Scholar 

  50. Lievremont, J. P., Rizzuto, R., Hendershot, L. & Meldolesi, J. BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J. Biol. Chem. 272, 30873–30879 (1997).

    CAS  PubMed  Google Scholar 

  51. Roderick, H. L., Lechleiter, J. D. & Camacho, P. Cytosolic phosphorylation of calnexin controls intracellular Ca2+ oscillations via an interaction with SERCA2b. J. Cell Biol. 149, 1235–1248 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Carreras-Sureda, A., Pihan, P. & Hetz, C. Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses. Cell Calcium 70, 24–31 (2018).

    CAS  PubMed  Google Scholar 

  53. John, L. M., Lechleiter, J. D. & Camacho, P. Differential modulation of SERCA2 isoforms by calreticulin. J. Cell Biol. 142, 963–973 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cardenas, C. et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270–283 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Pinton, P. & Rizzuto, R. Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ. 13, 1409–1418 (2006).

    CAS  PubMed  Google Scholar 

  56. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011).

    CAS  PubMed  Google Scholar 

  57. Galluzzi, L., Yamazaki, T. & Kroemer, G. Linking cellular stress responses to systemic homeostasis. Nat. Rev. Mol. Cell Biol. 19, 731–745 (2018).

    CAS  PubMed  Google Scholar 

  58. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    PubMed  Google Scholar 

  59. NCCN. Prostate Cancer NCCN Evidence Blocks. NCCN https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (2022).

  60. NCCN. NCCN Guidelines Version 1.2020 Prostate Cancer. NCCN https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (2020).

  61. Storm, M., Sheng, X., Arnoldussen, Y. J. & Saatcioglu, F. Prostate cancer and the unfolded protein response. Oncotarget 7, 54051–54066 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Madden, E., Logue, S. E., Healy, S. J., Manie, S. & Samali, A. The role of the unfolded protein response in cancer progression: from oncogenesis to chemoresistance. Biol. Cell 111, 1–17 (2019).

    PubMed  Google Scholar 

  63. Moenner, M., Pluquet, O., Bouchecareilh, M. & Chevet, E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 67, 10631–10634 (2007).

    CAS  PubMed  Google Scholar 

  64. Koumenis, C. & Wouters, B. G. “Translating” tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol. Cancer Res. 4, 423–436 (2006).

    CAS  PubMed  Google Scholar 

  65. Romero-Ramirez, L. et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res. 64, 5943–5947 (2004).

    CAS  PubMed  Google Scholar 

  66. Blais, J. D. et al. Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol. Cell Biol. 26, 9517–9532 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bi, M. et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 24, 3470–3481 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Weidemann, A. & Johnson, R. S. Biology of HIF-1α. Cell Death Differ. 15, 621–627 (2008).

    CAS  PubMed  Google Scholar 

  69. Chen, X. et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508, 103–107 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Vergis, R. et al. Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. Lancet Oncol. 9, 342–351 (2008).

    PubMed  Google Scholar 

  71. Ivanova, I. G., Park, C. V., Yemm, A. I. & Kenneth, N. S. PERK/eIF2α signaling inhibits HIF-induced gene expression during the unfolded protein response via YB1-dependent regulation of HIF1α translation. Nucleic Acids Res. 46, 3878–3890 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jamaspishvili, T. et al. Clinical implications of PTEN loss in prostate cancer. Nat. Rev. Urol. 15, 222–234 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Faisal, F. A. & Lotan, T. L. The genomic and molecular pathology of prostate cancer: clinical implications for diagnosis, prognosis, and therapy. Adv. Anat. Pathol. 27, 11–19 (2020).

    CAS  PubMed  Google Scholar 

  74. Kim, J., Eltoum, I. E., Roh, M., Wang, J. & Abdulkadir, S. A. Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer. PLoS Genet. 5, e1000542 (2009).

    PubMed  PubMed Central  Google Scholar 

  75. Ruggero, D. The role of Myc-induced protein synthesis in cancer. Cancer Res. 69, 8839–8843 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pallmann, N. et al. Regulation of the unfolded protein response through ATF4 and FAM129A in prostate cancer. Oncogene 38, 6301–6318 (2019).

    CAS  PubMed  Google Scholar 

  77. Sheng, X. et al. Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Mol. Med. 7, 788–801 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rouschop, K. M. et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Invest. 120, 127–141 (2010).

    CAS  PubMed  Google Scholar 

  79. Huang, Y. L. et al. Extrinsic sphingosine 1-phosphate activates S1P5 and induces autophagy through generating endoplasmic reticulum stress in human prostate cancer PC-3 cells. Cell Signal. 26, 611–618 (2014).

    CAS  PubMed  Google Scholar 

  80. Zhao, R. et al. ATF6α promotes prostate cancer progression by enhancing PLA2G4A-mediated arachidonic acid metabolism and protecting tumor cells against ferroptosis. Prostate 82, 617–629 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mahadevan, N. R. et al. Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc. Natl Acad. Sci. USA 108, 6561–6566 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Rodvold, J. J. et al. Intercellular transmission of the unfolded protein response promotes survival and drug resistance in cancer cells. Sci. Signal. https://doi.org/10.1126/scisignal.aah7177 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Direito, I., Fardilha, M. & Helguero, L. A. Contribution of the unfolded protein response to breast and prostate tissue homeostasis and its significance to cancer endocrine response. Carcinogenesis 40, 203–215 (2019).

    CAS  PubMed  Google Scholar 

  84. Lee, A. S. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 67, 3496–3499 (2007).

    CAS  PubMed  Google Scholar 

  85. Daneshmand, S. et al. Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum. Pathol. 38, 1547–1552 (2007).

    CAS  PubMed  Google Scholar 

  86. Pootrakul, L. et al. Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer. Clin. Cancer Res. 12, 5987–5993 (2006).

    CAS  PubMed  Google Scholar 

  87. Maddalo, D. et al. A peptidic unconjugated GRP78/BiP ligand modulates the unfolded protein response and induces prostate cancer cell death. PLoS ONE 7, e45690 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu, R. et al. Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signaling, tumor growth, and metastasis. Clin. Cancer Res. 19, 6802–6811 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fu, Y. et al. Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium. Proc. Natl Acad. Sci. USA 105, 19444–19449 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, Y. et al. Cancer cells resistant to therapy promote cell surface relocalization of GRP78 which complexes with PI3K and enhances PI(3,4,5)P3 production. PLoS ONE 8, e80071 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 8, 627–644 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    CAS  PubMed  Google Scholar 

  93. Binet, F. & Sapieha, P. ER stress and angiogenesis. Cell Metab. 22, 560–575 (2015).

    CAS  PubMed  Google Scholar 

  94. Ghosh, R. et al. Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS ONE 5, e9575 (2010).

    PubMed  PubMed Central  Google Scholar 

  95. Dong, D. et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res. 68, 498–505 (2008).

    CAS  PubMed  Google Scholar 

  96. Taghizadeh, S. et al. sFLT01 modulates invasion and metastasis in prostate cancer DU145 cells by inhibition of VEGF/GRP78/MMP2&9 axis. BMC Mol. Cell Biol. 22, 30 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Fang, J., Ding, M., Yang, L., Liu, L. Z. & Jiang, B. H. PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cell Signal. 19, 2487–2497 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Murakami, T. et al. Cleavage of the membrane-bound transcription factor OASIS in response to endoplasmic reticulum stress. J. Neurochem. 96, 1090–1100 (2006).

    CAS  PubMed  Google Scholar 

  99. Mellor, P. et al. CREB3L1 is a metastasis suppressor that represses expression of genes regulating metastasis, invasion, and angiogenesis. Mol. Cell Biol. 33, 4985–4995 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dhingra, P. et al. Identification of novel prostate cancer drivers using RegNetDriver: a framework for integration of genetic and epigenetic alterations with tissue-specific regulatory network. Genome Biol. 18, 141 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Prakash, O., Gill, J. & Farr, G. Immune disorders and susceptibility to neoplasms. Ochsner J. 4, 107–111 (2002).

    PubMed  PubMed Central  Google Scholar 

  102. Zanetti, M., Xian, S., Dosset, M. & Carter, H. The unfolded protein response at the tumor-immune interface. Front. Immunol. 13, 823157 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cubillos-Ruiz, J. R. et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161, 1527–1538 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Cubillos-Ruiz, J. R., Bettigole, S. E. & Glimcher, L. H. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168, 692–706 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hilligan, K. L. & Ronchese, F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol. Immunol. 17, 587–599 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mahadevan, N. R., Fernandez, A., Rodvold, J. J., Almanza, G. & Zanetti, M. Prostate cancer cells undergoing ER stress in vitro and in vivo activate transcription of pro-inflammatory cytokines. J. Inflamm. Res. 3, 99–103 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. Nat. Rev. Cancer 20, 398–411 (2020).

    CAS  PubMed  Google Scholar 

  108. Paez, D. et al. Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin. Cancer Res. 18, 645–653 (2012).

    PubMed  Google Scholar 

  109. Ranganathan, A. C., Zhang, L., Adam, A. P. & Aguirre-Ghiso, J. A. Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res. 66, 1702–1711 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ranganathan, A. C., Ojha, S., Kourtidis, A., Conklin, D. S. & Aguirre-Ghiso, J. A. Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer Res. 68, 3260–3268 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ranganathan, A. C., Adam, A. P., Zhang, L. & Aguirre-Ghiso, J. A. Tumor cell dormancy induced by p38SAPK and ER-stress signaling: an adaptive advantage for metastatic cells. Cancer Biol. Ther. 5, 729–735 (2006).

    CAS  PubMed  Google Scholar 

  112. Amling, C. L. et al. Long-term hazard of progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

    CAS  PubMed  Google Scholar 

  113. Morrissey, C., Vessella, R. L., Lange, P. H. & Lam, H. M. The biology and clinical implications of prostate cancer dormancy and metastasis. J. Mol. Med. 94, 259–265 (2016).

    CAS  PubMed  Google Scholar 

  114. Sekino, Y. & Teishima, J. Molecular mechanisms of docetaxel resistance in prostate cancer. Cancer Drug Resist. 3, 676–685 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A. & Fares, Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal. Transduct. Target. Ther. 5, 28 (2020).

    PubMed  PubMed Central  Google Scholar 

  116. Zhu, H. et al. Activating transcription factor 4 promotes esophageal squamous cell carcinoma invasion and metastasis in mice and is associated with poor prognosis in human patients. PLoS ONE 9, e103882 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. Shiota, M. et al. Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Res. 73, 3109–3119 (2013).

    CAS  PubMed  Google Scholar 

  118. Voll, E. A. et al. Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression. Oncotarget 5, 2648–2663 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. Rzymski, T. et al. The unfolded protein response controls induction and activation of ADAM17/TACE by severe hypoxia and ER stress. Oncogene 31, 3621–3634 (2012).

    CAS  PubMed  Google Scholar 

  120. Xiao, L. J. et al. ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion. Int. J. Oncol. 40, 1714–1724 (2012).

    PubMed  Google Scholar 

  121. Ward, A. K. et al. Epigenetic silencing of CREB3L1 by DNA methylation is associated with high-grade metastatic breast cancers with poor prognosis and is prevalent in triple negative breast cancers. Breast Cancer Res. 18, 12 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. Feng, Y. X. et al. Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1. Nat. Commun. 8, 1079 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. Avivar-Valderas, A. et al. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol. Cell Biol. 31, 3616–3629 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Mao, C., Livezey, M., Kim, J. E. & Shapiro, D. J. Antiestrogen resistant cell lines expressing estrogen receptor α mutations upregulate the unfolded protein response and are killed by BHPI. Sci. Rep. 6, 34753 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Shapiro, D. J., Livezey, M., Yu, L., Zheng, X. & Andruska, N. Anticipatory UPR activation: a protective pathway and target in cancer. Trends Endocrinol. Metab. 27, 731–741 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhao, N. et al. Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. J. Clin. Invest. 128, 1283–1299 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. Zhou, Y., Bolton, E. C. & Jones, J. O. Androgens and androgen receptor signaling in prostate tumorigenesis. J. Mol. Endocrinol. 54, R15–R29 (2015).

    CAS  PubMed  Google Scholar 

  128. Aurilio, G. et al. Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications. Cells https://doi.org/10.3390/cells9122653 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zhang, T., Karsh, L. I., Nissenblatt, M. J. & Canfield, S. E. Androgen receptor splice variant, AR-V7, as a biomarker of resistance to androgen axis-targeted therapies in advanced prostate cancer. Clin. Genitourin. Cancer 18, 1–10 (2020).

    CAS  PubMed  Google Scholar 

  130. Karantanos, T., Corn, P. G. & Thompson, T. C. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32, 5501–5511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Thorpe, J. A. & Schwarze, S. R. IRE1α controls cyclin A1 expression and promotes cell proliferation through XBP-1. Cell Stress Chaperones 15, 497–508 (2010).

    CAS  PubMed  Google Scholar 

  132. Lonergan, P. E. & Tindall, D. J. Androgen receptor signaling in prostate cancer development and progression. J. Carcinog. 10, 20 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sheng, X. et al. IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat. Commun. 10, 323 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Erzurumlu, Y. & Ballar, P. Androgen mediated regulation of endoplasmic reticulum-associated degradation and its effects on prostate cancer. Sci. Rep. 7, 40719 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang, F., Yuan, C., Wu, D., Zhang, J. & Zhou, X. IRE1α expedites the progression of castration-resistant prostate cancers via the positive feedback loop of IRE1α/IL-6/AR. Front. Oncol. 11, 671141 (2021).

    PubMed  PubMed Central  Google Scholar 

  136. Stelloo, S. et al. Androgen modulation of XBP1 is functionally driving part of the AR transcriptional program. Endocr. Relat. Cancer 27, 67–79 (2020).

    CAS  PubMed  Google Scholar 

  137. Bai, S. et al. A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene 38, 4977–4989 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, Q. et al. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res. 71, 7525–7536 (2011).

    CAS  PubMed  Google Scholar 

  139. Jin, Y. et al. STAMP2 increases oxidative stress and is critical for prostate cancer. EMBO Mol. Med. 7, 315–331 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Overcash, R. F. et al. Androgen signaling promotes translation of TMEFF2 in prostate cancer cells via phosphorylation of the alpha subunit of the translation initiation factor 2. PLoS ONE 8, e55257 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Petiwala, S. M. et al. Carnosic acid promotes degradation of the androgen receptor and is regulated by the unfolded protein response pathway in vitro and in vivo. Carcinogenesis 37, 827–838 (2016).

    CAS  PubMed  Google Scholar 

  142. Li, G. et al. Gartanin, an isoprenylated xanthone from the mangosteen fruit (Garcinia mangostana), is an androgen receptor degradation enhancer. Mol. Nutr. Food Res. 60, 1458–1469 (2016).

    CAS  PubMed  Google Scholar 

  143. Wadosky, K. M., Shourideh, M., Goodrich, D. W. & Koochekpour, S. Riluzole induces AR degradation via endoplasmic reticulum stress pathway in androgen-dependent and castration-resistant prostate cancer cells. Prostate 79, 140–150 (2019).

    CAS  PubMed  Google Scholar 

  144. Li, X. et al. Endoplasmic reticulum stress inhibits AR expression via the PERK/eIF2α/ATF4 pathway in luminal androgen receptor triple-negative breast cancer and prostate cancer. NPJ Breast Cancer 8, 2 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Pachikov, A. N. et al. The non-canonical mechanism of ER stress-mediated progression of prostate cancer. J. Exp. Clin. Cancer Res. 40, 289 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Sreenath, T. L. et al. ETS related gene mediated androgen receptor aggregation and endoplasmic reticulum stress in prostate cancer development. Sci. Rep. 7, 1109 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Liu, J. et al. Activation of UPR signaling pathway is associated with the malignant progression and poor prognosis in prostate cancer. Prostate 77, 274–281 (2017).

    CAS  PubMed  Google Scholar 

  148. So, A. Y., de la Fuente, E., Walter, P., Shuman, M. & Bernales, S. The unfolded protein response during prostate cancer development. Cancer Metastasis Rev. 28, 219–223 (2009).

    CAS  PubMed  Google Scholar 

  149. Yang, J. et al. Metformin induces ER stress-dependent apoptosis through miR-708-5p/NNAT pathway in prostate cancer. Oncogenesis 4, e158 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Ahn, H. K., Lee, Y. H. & Koo, K. C. Current status and application of metformin for prostate cancer: a comprehensive review. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21228540 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Chen, C. et al. Metformin exerts anti-AR-negative prostate cancer activity via AMPK/autophagy signaling pathway. Cancer Cell Int. 21, 404 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Vinceti, M. et al. Selenium for preventing cancer. Cochrane Database Syst. Rev. 1, CD005195 (2018).

    PubMed  Google Scholar 

  153. Sayehmiri, K., Azami, M., Mohammadi, Y., Soleymani, A. & Tardeh, Z. The association between selenium and prostate cancer: a systematic review and meta-analysis. Asian Pac. J. Cancer Prev. 19, 1431–1437 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Klein, E. A. et al. Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA 306, 1549–1556 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Wu, Y., Zhang, H., Dong, Y., Park, Y. M. & Ip, C. Endoplasmic reticulum stress signal mediators are targets of selenium action. Cancer Res. 65, 9073–9079 (2005).

    CAS  PubMed  Google Scholar 

  156. Zu, K. et al. Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells. Oncogene 25, 546–554 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Skrott, Z. et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 552, 194–199 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Majera, D. et al. Targeting genotoxic and proteotoxic stress-response pathways in human prostate cancer by clinically available PARP inhibitors, vorinostat and disulfiram. Prostate 79, 352–362 (2019).

    CAS  PubMed  Google Scholar 

  159. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02671890 (2022).

  160. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04521335 (2022).

  161. Sehgal, P. et al. Inhibition of the sarco/endoplasmic reticulum (ER) Ca2+-ATPase by thapsigargin analogs induces cell death via ER Ca2+ depletion and the unfolded protein response. J. Biol. Chem. 292, 19656–19673 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Lindner, P., Christensen, S. B., Nissen, P., Moller, J. V. & Engedal, N. Cell death induced by the ER stressor thapsigargin involves death receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded protein response components. Cell Commun. Signal. 18, 12 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Aloysius, H. & Hu, L. Targeted prodrug approaches for hormone refractory prostate cancer. Med. Res. Rev. 35, 554–585 (2015).

    CAS  PubMed  Google Scholar 

  164. Denmeade, S. R. et al. Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J. Natl Cancer Inst. 95, 990–1000 (2003).

    CAS  PubMed  Google Scholar 

  165. Shiraishi, T. et al. Tunicamycin enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human prostate cancer cells. Cancer Res. 65, 6364–6370 (2005).

    CAS  PubMed  Google Scholar 

  166. Guha, P., Kaptan, E., Gade, P., Kalvakolanu, D. V. & Ahmed, H. Tunicamycin induced endoplasmic reticulum stress promotes apoptosis of prostate cancer cells by activating mTORC1. Oncotarget 8, 68191–68207 (2017).

    PubMed  PubMed Central  Google Scholar 

  167. Hetz, C., Axten, J. M. & Patterson, J. B. Pharmacological targeting of the unfolded protein response for disease intervention. Nat. Chem. Biol. 15, 764–775 (2019).

    CAS  PubMed  Google Scholar 

  168. Lu, T. et al. Knockdown of glucose-regulated protein 78/binding immunoglobulin heavy chain protein expression by asymmetric small interfering RNA induces apoptosis in prostate cancer cells and attenuates migratory capability. Mol. Med. Rep. 11, 249–256 (2015).

    CAS  PubMed  Google Scholar 

  169. Backer, J. M. et al. Chaperone-targeting cytotoxin and endoplasmic reticulum stress-inducing drug synergize to kill cancer cells. Neoplasia 11, 1165–1173 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Delie, F., Petignat, P. & Cohen, M. GRP78-targeted nanotherapy against castrate-resistant prostate cancer cells expressing membrane GRP78. Target. Oncol. 8, 225–230 (2013).

    PubMed  Google Scholar 

  171. Elfiky, A. A., Baghdady, A. M., Ali, S. A. & Ahmed, M. I. GRP78 targeting: hitting two birds with a stone. Life Sci. 260, 118317 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Mandelin, J. et al. Selection and identification of ligand peptides targeting a model of castrate-resistant osteogenic prostate cancer and their receptors. Proc. Natl Acad. Sci. USA 112, 3776–3781 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Ferrara, F. et al. Targeted molecular-genetic imaging and ligand-directed therapy in aggressive variant prostate cancer. Proc. Natl Acad. Sci. USA 113, 12786–12791 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Burikhanov, R. et al. The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 138, 377–388 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhang, X. et al. Codelivery of GRP78 siRNA and docetaxel via RGD-PEG-DSPE/DOPA/CaP nanoparticles for the treatment of castration-resistant prostate cancer. Drug Des. Devel. Ther. 13, 1357–1372 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Hoter, A., Rizk, S. & Naim, H. Y. The multiple roles and therapeutic potential of molecular chaperones in prostate cancer. Cancers https://doi.org/10.3390/cancers11081194 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Eccles, S. A. et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 68, 2850–2860 (2008).

    CAS  PubMed  Google Scholar 

  178. Rocchi, P. et al. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res. 64, 6595–6602 (2004).

    CAS  PubMed  Google Scholar 

  179. Rocchi, P. et al. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res. 65, 11083–11093 (2005).

    CAS  PubMed  Google Scholar 

  180. Solit, D. B. et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin. Cancer Res. 8, 986–993 (2002).

    CAS  PubMed  Google Scholar 

  181. Saporita, A. J., Ai, J. & Wang, Z. The Hsp90 inhibitor, 17-AAG, prevents the ligand-independent nuclear localization of androgen receptor in refractory prostate cancer cells. Prostate 67, 509–520 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. He, S. et al. Potent activity of the Hsp90 inhibitor ganetespib in prostate cancer cells irrespective of androgen receptor status or variant receptor expression. Int. J. Oncol. 42, 35–43 (2013).

    CAS  PubMed  Google Scholar 

  183. Thakur, M. K. et al. A phase II trial of ganetespib, a heat shock protein 90 Hsp90) inhibitor, in patients with docetaxel-pretreated metastatic castrate-resistant prostate cancer (CRPC) — a prostate cancer clinical trials consortium (PCCTC) study. Invest. New Drugs 34, 112–118 (2016).

    CAS  PubMed  Google Scholar 

  184. Moon, S. J. et al. Bruceantin targets HSP90 to overcome resistance to hormone therapy in castration-resistant prostate cancer. Theranostics 11, 958–973 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Rocchi, P. et al. Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int. 98, 1082–1089 (2006).

    CAS  PubMed  Google Scholar 

  186. Kumano, M. et al. Cotargeting stress-activated Hsp27 and autophagy as a combinatorial strategy to amplify endoplasmic reticular stress in prostate cancer. Mol. Cancer Ther. 11, 1661–1671 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Yu, E. Y. et al. A randomized phase 2 study of a HSP27 targeting antisense, apatorsen with prednisone versus prednisone alone, in patients with metastatic castration resistant prostate cancer. Invest. N. Drugs 36, 278–287 (2018).

    CAS  Google Scholar 

  188. Lamoureux, F. et al. Suppression of heat shock protein 27 using OGX-427 induces endoplasmic reticulum stress and potentiates heat shock protein 90 inhibitors to delay castrate-resistant prostate cancer. Eur. Urol. 66, 145–155 (2014).

    CAS  PubMed  Google Scholar 

  189. Maly, D. J. & Papa, F. R. Druggable sensors of the unfolded protein response. Nat. Chem. Biol. 10, 892–901 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Ri, M. et al. Identification of toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing. Blood Cancer J. 2, e79 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Sanches, M. et al. Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors. Nat. Commun. 5, 4202 (2014).

    CAS  PubMed  Google Scholar 

  192. Atkins, C. et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 73, 1993–2002 (2013).

    CAS  PubMed  Google Scholar 

  193. Marciniak, S. J., Chambers, J. E. & Ron, D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat. Rev. Drug Discov. https://doi.org/10.1038/s41573-021-00320-3 (2021).

    Article  PubMed  Google Scholar 

  194. Sidrauski, C. et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife 2, e00498 (2013).

    PubMed  PubMed Central  Google Scholar 

  195. Rabouw, H. H. et al. Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc. Natl Acad. Sci. USA 116, 2097–2102 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Maltais, R. et al. Induction of endoplasmic reticulum stress-mediated apoptosis by aminosteroid RM-581 efficiently blocks the growth of PC-3 cancer cells and tumors resistant or not to docetaxel. Int. J. Mol. Sci. https://doi.org/10.3390/ijms222011181 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Tan, B., Jia, R., Wang, G. & Yang, J. Astragaloside attenuates the progression of prostate cancer cells through endoplasmic reticulum stress pathways. Oncol. Lett. 16, 3901–3906 (2018).

    PubMed  PubMed Central  Google Scholar 

  198. Cai, J. et al. A novel deubiquitinase inhibitor b-AP15 triggers apoptosis in both androgen receptor-dependent and -independent prostate cancers. Oncotarget 8, 63232–63246 (2017).

    PubMed  PubMed Central  Google Scholar 

  199. Kobylewski, S. E., Henderson, K. A., Yamada, K. E. & Eckhert, C. D. Activation of the EIF2alpha/ATF4 and ATF6 pathways in DU-145 cells by boric acid at the concentration reported in men at the US mean boron intake. Biol. Trace Elem. Res. 176, 278–293 (2017).

    CAS  PubMed  Google Scholar 

  200. Sanchez, A. M. et al. Induction of the endoplasmic reticulum stress protein GADD153/CHOP by capsaicin in prostate PC-3 cells: a microarray study. Biochem. Biophys. Res. Commun. 372, 785–791 (2008).

    CAS  PubMed  Google Scholar 

  201. Evelyn, C. R. et al. Small-molecule inhibition of Rho/MKL/SRF transcription in prostate cancer cells: modulation of cell cycle, ER stress, and metastasis gene networks. Microarrays https://doi.org/10.3390/microarrays5020013 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Wang, W. B. et al. Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90. J. Cell Physiol. 227, 2196–2206 (2012).

    CAS  PubMed  Google Scholar 

  203. Kim, H. K. et al. Chalcone suppresses tumor growth through NOX4-IRE1α sulfonation-RIDD-miR-23b axis. Redox Biol. 40, 101853 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Wu, S. et al. Chelerythrine induced cell death through ROS-dependent ER stress in human prostate cancer cells. Onco Targets Ther. 11, 2593–2601 (2018).

    PubMed  PubMed Central  Google Scholar 

  205. Ryu, S., Lim, W., Bazer, F. W. & Song, G. Chrysin induces death of prostate cancer cells by inducing ROS and ER stress. J. Cell Physiol. 232, 3786–3797 (2017).

    CAS  PubMed  Google Scholar 

  206. Fan, L. et al. Clofoctol and sorafenib inhibit prostate cancer growth via synergistic induction of endoplasmic reticulum stress and UPR pathways. Cancer Manag. Res. 10, 4817–4829 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Wang, M. et al. Identification of an old antibiotic clofoctol as a novel activator of unfolded protein response pathways and an inhibitor of prostate cancer. Br. J. Pharmacol. 171, 4478–4489 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Ma, B. et al. Corosolic acid, a natural triterpenoid, induces ER stress-dependent apoptosis in human castration resistant prostate cancer cells via activation of IRE-1/JNK, PERK/CHOP and TRIB3. J. Exp. Clin. Cancer Res. 37, 210 (2018).

    PubMed  PubMed Central  Google Scholar 

  209. Lee, W. J. et al. Nonautophagic cytoplasmic vacuolation death induction in human PC-3M prostate cancer by curcumin through reactive oxygen species -mediated endoplasmic reticulum stress. Sci. Rep. 5, 10420 (2015).

    PubMed  PubMed Central  Google Scholar 

  210. Rivera, M. et al. Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells. PLoS ONE 12, e0179587 (2017).

    PubMed  PubMed Central  Google Scholar 

  211. Pak, S. et al. The small molecule WNT/beta-catenin inhibitor CWP232291 blocks the growth of castration-resistant prostate cancer by activating the endoplasmic reticulum stress pathway. J. Exp. Clin. Cancer Res. 38, 342 (2019).

    PubMed  PubMed Central  Google Scholar 

  212. Nawasreh, M. M. et al. Biological activity and apoptotic signaling pathway of C11-functionalized cephalostatin 1 analogues. Steroids 158, 108602 (2020).

    CAS  PubMed  Google Scholar 

  213. Yang, D. L. et al. Demethylzeylasteral (T-96) initiates extrinsic apoptosis against prostate cancer cells by inducing ROS-mediated ER stress and suppressing autophagic flux. Biol. Res. 54, 27 (2021).

    PubMed  PubMed Central  Google Scholar 

  214. Sun, S. et al. Endoplasmic reticulum stress as a correlate of cytotoxicity in human tumor cells exposed to diindolylmethane in vitro. Cell Stress. Chaperones 9, 76–87 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Sanchez, M. et al. Oxidized analogs of Di(1H-indol-3-yl)methyl-4-substituted benzenes are NR4A1-dependent UPR inducers with potent and safe anti-cancer activity. Oncotarget 9, 25057–25074 (2018).

    PubMed  PubMed Central  Google Scholar 

  216. Matsumoto, T. et al. Doxycycline induces apoptosis via ER stress selectively to cells with a cancer stem cell-like properties: importance of stem cell plasticity. Oncogenesis 6, 397 (2017).

    PubMed  PubMed Central  Google Scholar 

  217. Tao, T. et al. Fenofibrate inhibits the growth of prostate cancer through regulating autophagy and endoplasmic reticulum stress. Biochem. Biophys. Res. Commun. 503, 2685–2689 (2018).

    CAS  PubMed  Google Scholar 

  218. Sapili, H., Ho, C. S., Malagobadan, S., Arshad, N. M. & Nagoor, N. H. Geranylated 4-phenylcoumarins extracted from Mesua elegans induced caspase-independent cell death in prostate cancer cell lines through calpain-2 and cathepsin B. Sci. Rep. 10, 986 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Sun, C., Chesnokov, V., Larson, G. & Itakura, K. Glucosamine enhances TRAIL-induced apoptosis in the prostate cancer cell line DU145. Medicines https://doi.org/10.3390/medicines6040104 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Lee, M. G. et al. Heteronemin, a marine sesterterpenoid-type metabolite, induces apoptosis in prostate LNcap cells via oxidative and ER stress combined with the inhibition of topoisomerase II and Hsp90. Mar. Drugs https://doi.org/10.3390/md16060204 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Huang, H. et al. Isoalantolactone increases the sensitivity of prostate cancer cells to cisplatin treatment by inducing oxidative stress. Front. Cell Dev. Biol. 9, 632779 (2021).

    PubMed  PubMed Central  Google Scholar 

  222. Chen, W. et al. Isoalantolactone induces apoptosis through ROS-mediated ER stress and inhibition of STAT3 in prostate cancer cells. J. Exp. Clin. Cancer Res. 37, 309 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Li, K. et al. Isobavachalcone induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in human prostate cancer PC-3 cells. Oxid. Med. Cell Longev. 2018, 1915828 (2018).

    PubMed  PubMed Central  Google Scholar 

  224. Kim, M. J. et al. In vitro anticancer effects of JI017 on two prostate cancer cell lines involve endoplasmic reticulum stress mediated by elevated levels of reactive oxygen species. Front. Pharmacol. 12, 683575 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Gafar, A. A. et al. Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells. PeerJ 4, e2445 (2016).

    PubMed  PubMed Central  Google Scholar 

  226. Lin, H. Y. et al. The anti-proliferative activity of secondary metabolite from the marine streptomyces sp. against prostate cancer cells. Life https://doi.org/10.3390/life11121414 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Li, G., Petiwala, S. M., Pierce, D. R., Nonn, L. & Johnson, J. J. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract. PLoS ONE 8, e81572 (2013).

    PubMed  PubMed Central  Google Scholar 

  228. Jiang, H. et al. Marchantin M: a novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells. Cell Death Dis. 4, e761 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhang, T. W., Xing, L., Tang, J. L., Lu, J. X. & Liu, C. X. Marchantin M induces apoptosis of prostate cancer cells through endoplasmic reticulum stress. Med. Sci. Monit. 21, 3570–3576 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Chang, J. et al. Matrine inhibits prostate cancer via activation of the unfolded protein response/endoplasmic reticulum stress signaling and reversal of epithelial to mesenchymal transition. Mol. Med. Rep. 18, 945–957 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Afolabi, S. O. et al. Polyalthia longifolia extract triggers ER stress in prostate cancer cells concomitant with induction of apoptosis: insights from in vitro and in vivo studies. Oxid. Med. Cell Longev. 2019, 6726312 (2019).

    PubMed  PubMed Central  Google Scholar 

  232. Chiu, H. W. et al. Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS ONE 7, e40462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Burton, L. J. et al. Muscadine grape skin extract induces an unfolded protein response-mediated autophagy in prostate cancer cells: a TMT-based quantitative proteomic analysis. PLoS ONE 11, e0164115 (2016).

    PubMed  PubMed Central  Google Scholar 

  234. Chiu, S. C. et al. Induction of apoptosis coupled to endoplasmic reticulum stress in human prostate cancer cells by n-butylidenephthalide. PLoS ONE 7, e33742 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Guan, M., Su, L., Yuan, Y. C., Li, H. & Chow, W. A. Nelfinavir and nelfinavir analogs block site-2 protease cleavage to inhibit castration-resistant prostate cancer. Sci. Rep. 5, 9698 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Wu, M. H. et al. Norcantharidin combined with paclitaxel induces endoplasmic reticulum stress mediated apoptotic effect in prostate cancer cells by targeting SIRT7 expression. Env. Toxicol. 36, 2206–2216 (2021).

    CAS  Google Scholar 

  237. Wang, L. et al. Dissociation of NSC606985 induces atypical ER-stress and cell death in prostate cancer cells. Int. J. Oncol. 49, 529–538 (2016).

    CAS  PubMed  Google Scholar 

  238. Chang, Y. M. et al. Ouabain induces apoptotic cell death in human prostate DU 145 cancer cells through DNA damage and TRAIL pathways. Env. Toxicol. 34, 1329–1339 (2019).

    CAS  Google Scholar 

  239. Huang, H. et al. Plumbagin triggers ER stress-mediated apoptosis in prostate cancer cells via induction of ROS. Cell Physiol. Biochem. 45, 267–280 (2018).

    CAS  PubMed  Google Scholar 

  240. Rizzi, F. et al. Polyphenon E®, a standardized green tea extract, induces endoplasmic reticulum stress, leading to death of immortalized PNT1a cells by anoikis and tumorigenic PC3 by necroptosis. Carcinogenesis 35, 828–839 (2014).

    CAS  PubMed  Google Scholar 

  241. Wang, F. et al. Proscillaridin A slows the prostate cancer progression through triggering the activation of endoplasmic reticulum stress. Cell Cycle 19, 541–550 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Huong, P. T. et al. Proteasome inhibitor-I enhances tunicamycin-induced chemosensitization of prostate cancer cells through regulation of NF-κB and CHOP expression. Cell Signal. 23, 857–865 (2011).

    CAS  PubMed  Google Scholar 

  243. Zhang, X. et al. Quercetin enhanced paclitaxel therapeutic effects towards PC-3 prostate cancer through ER stress induction and ROS production. Onco Targets Ther. 13, 513–523 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Selvaraj, S., Sun, Y., Sukumaran, P. & Singh, B. B. Resveratrol activates autophagic cell death in prostate cancer cells via downregulation of STIM1 and the mTOR pathway. Mol. Carcinog. 55, 818–831 (2016).

    CAS  PubMed  Google Scholar 

  245. Yu, J., Yang, Y., Li, S. & Meng, P. Salinomycin triggers prostate cancer cell apoptosis by inducing oxidative and endoplasmic reticulum stress via suppressing Nrf2 signaling. Exp. Ther. Med. 22, 946 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Zhang, Y. et al. Salinomycin triggers endoplasmic reticulum stress through ATP2A3 upregulation in PC-3 cells. BMC Cancer 19, 381 (2019).

    PubMed  PubMed Central  Google Scholar 

  247. Gara, R. K. et al. Shikonin selectively induces apoptosis in human prostate cancer cells through the endoplasmic reticulum stress and mitochondrial apoptotic pathway. J. Biomed. Sci. 22, 26 (2015).

    PubMed  PubMed Central  Google Scholar 

  248. Kim, S. H. et al. Silibinin induces mitochondrial NOX4-mediated endoplasmic reticulum stress response and its subsequent apoptosis. BMC Cancer 16, 452 (2016).

    PubMed  PubMed Central  Google Scholar 

  249. Song, J. H. & Kraft, A. S. Pim kinase inhibitors sensitize prostate cancer cells to apoptosis triggered by Bcl-2 family inhibitor ABT-737. Cancer Res. 72, 294–303 (2012).

    CAS  PubMed  Google Scholar 

  250. Nagesh, P. K. B. et al. Tannic acid induces endoplasmic reticulum stress-mediated apoptosis in prostate cancer. Cancers https://doi.org/10.3390/cancers10030068 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Chiu, S. C. et al. Tanshinone IIA inhibits human prostate cancer cells growth by induction of endoplasmic reticulum stress in vitro and in vivo. Prostate Cancer Prostatic Dis. 16, 315–322 (2013).

    CAS  PubMed  Google Scholar 

  252. Grayson, K. A., Hope, J. M., Wang, W., Reinhart-King, C. A. & King, M. R. Taxanes sensitize prostate cancer cells to TRAIL-induced apoptotic synergy via endoplasmic reticulum stress. Mol. Cancer Ther. 20, 833–845 (2021).

    CAS  PubMed  Google Scholar 

  253. Xu, Q. et al. Hyper-acetylation contributes to the sensitivity of chemo-resistant prostate cancer cells to histone deacetylase inhibitor Trichostatin A. J. Cell Mol. Med. 22, 1909–1922 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Zhao, F. et al. Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells. Oncotarget 7, 5366–5382 (2016).

    PubMed  Google Scholar 

  255. Yang, J. B. et al. Tubeimoside-1 induces oxidative stress-mediated apoptosis and G0/G1 phase arrest in human prostate carcinoma cells in vitro. Acta Pharmacol. Sin. 37, 950–962 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Bruno, R. D., Gover, T. D., Burger, A. M., Brodie, A. M. & Njar, V. C. 17α-Hydroxylase/17,20 lyase inhibitor VN/124-1 inhibits growth of androgen-independent prostate cancer cells via induction of the endoplasmic reticulum stress response. Mol. Cancer Ther. 7, 2828–2836 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Chen, H. et al. A novel small-molecule activator of unfolded protein response suppresses castration-resistant prostate cancer growth. Cancer Lett. 532, 215580 (2022).

    CAS  PubMed  Google Scholar 

  258. Hessenauer, A., Schneider, C. C., Gotz, C. & Montenarh, M. CK2 inhibition induces apoptosis via the ER stress response. Cell Signal. 23, 145–151 (2011).

    CAS  PubMed  Google Scholar 

  259. Hsieh, C. L. et al. A novel salicylanilide derivative induces autophagy cell death in castration-resistant prostate cancer via ER stress-activated PERK signaling pathway. Mol. Cancer Ther. 19, 101–111 (2020).

    CAS  PubMed  Google Scholar 

  260. Fontana, F. et al. δ-Tocotrienol induces apoptosis, involving endoplasmic reticulum stress and autophagy, and paraptosis in prostate cancer cells. Cell Prolif. 52, e12576 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, and wrote the manuscript, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Hao G. Nguyen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Valerio Farfariello and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Calle, C.M., Shee, K., Yang, H. et al. The endoplasmic reticulum stress response in prostate cancer. Nat Rev Urol 19, 708–726 (2022). https://doi.org/10.1038/s41585-022-00649-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00649-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing